DifferentiaalilaskentaLaajuus (3 op)
Tunnus: 5N00EG74
Laajuus
3 op
Osaamistavoitteet
Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa
Sisältö
Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.
Esitietovaatimukset
Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.
Arviointikriteerit, tyydyttävä (1-2)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit, hyvä (3-4)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit, kiitettävä (5)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Ilmoittautumisaika
03.08.2024 - 02.09.2024
Ajoitus
02.09.2024 - 20.10.2024
Laajuus
3 op
Toteutustapa
Lähiopetus
Yksikkö
TAMK Matematiikka ja fysiikka
Toimipiste
TAMK Pääkampus
Opetuskielet
- Suomi
Koulutus
- Biotuotetekniikan tutkinto-ohjelma
Opettaja
- Kirsi-Maria Rinneheimo
Vastuuhenkilö
Jukka Suominen
Ryhmät
-
24BIOTABiotuotetekniikan tutkinto-ohjelma, kevät 2024
Tavoitteet (OJ)
Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa
Sisältö (OJ)
Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.
Esitietovaatimukset (OJ)
Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.
Arviointikriteerit, tyydyttävä (1-2) (OJ)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit, hyvä (3-4) (OJ)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit, kiitettävä (5) (OJ)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Aika ja paikka
Toteutus kestää 3. periodin ja opetus viikoittain.
Tenttien ja uusintatenttien ajankohdat
Opintojakson välikokeet pidetään
1. välikoe xx.xx.2024
2. välikoe xx.xx.2024
Opintojakson päätyttyä järjestetään kaksi uusintatenttiä:
1. uusintatentti 15.11.2024 klo 13- 16 (paikka ilmoitettu Moodlessa)
2. uusintatentti/korotus 13.12.2024 klo 13 - 16 (paikka ilmoitettu Moodlessa)
Uusinnat ja korotukset ovat vain ja ainoastaan tässä ilmoitettuna aikana, ei siis myöhemmin esim. seuraavana vuonna.
Uusintatenttiin ja korotukseen ilmoittaudutaan Pakin kautta..
Uusintaan osallistuminen edellyttää arvosanaa 0.
Yleiseti kokeesta:
Sairastapauksissa vaaditaan lääkärintodistus.
Poissaolo kokeesta vastaa hylättyä suoritusta.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Arviointimenetelmät ja arvioinnin perusteet
Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan kahdella välikokeella, nettitehtävillä ja viikoittain tarkastettavilla harjoitustehtävillä. Molempiin välikokeisiin pitää osallistua.
Arvosteluun vaikuttavat nettitehtävät 15 %, välikokeet 75 % ja kotitehtävät 10 %. Kokeiden arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan, nettitehtävien ja kotitehtävien tekoa sekä molempiin välikokeisiin osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois. Arvosanan 1 saa pistemäärällä, joka on 30 % kurssin eri arviointimuotojen yhteenlasketusta maksimipistemäärästä, kuitenkin siten, että vähintään 15 % pisteistä on kokeista.
Uusinta- ja korotus:
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä-, nettitehtävä- eikä välikoepisteet.
Mikäli opiskelija hyödyntää tekoälyä tehtävien ratkaisemisessa, niin ratkaisut pitää kuitenkin esittää toteutuksella opetettavin käsittein, merkinnöin ja menetelmin ja välivaiheet on osattava selittää.
Arviointiasteikko
0-5
Opiskelumuodot ja opetusmenetelmät
Lähiopetus, itsenäinen opiskelu, tuntiharjoitukset ja kotitehtävät, videomateriaalit, nettitehtävät, välikokeet.
Oppimateriaalit
Opettajan Moodlessa jakama materiaali (opetusmonisteet, videot, STACK-tehtävät)
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS/ TI-nspire CX II CAS -laskin.
Opiskelijan ajankäyttö ja kuormitus
Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
- opetuksesta, jossa opettaja mukana
- ryhmätöistä (opettaja ei ole mukana)
- itsenäisestä työskentelystä (mm. kotitehtävät, nettitehtävät, opetusvideot)
- kokeista
Opettajan pitämiä lähitunteja on n. 27 h. Lisäksi opiskelijalla on mahdollisuus osallistua matematiikan tukipajaan maanantaisin klo 14 - 16.
Sisällön jaksotus
-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät
Toteutuksen valinnaiset suoritustavat
Ei ole.
Harjoittelu- ja työelämäyhteistyö
Ei ole.
Kansainvälisyys
Ei ole.
Lisätietoja opiskelijoille
Opetus alkaa viikolla 36 lukujärjestyksen mukaisesti.
Opintojaksoon on Moodle-toteutus.
Ilmoittautumisaika
01.06.2024 - 31.08.2024
Ajoitus
24.08.2024 - 14.12.2024
Laajuus
3 op
Toteutustapa
Lähiopetus
Yksikkö
TAMK Matematiikka ja fysiikka
Toimipiste
TAMK Pääkampus
Opetuskielet
- Suomi
Paikat
0 - 40
Koulutus
- Sähkö- ja automaatiotekniikan tutkinto-ohjelma
Opettaja
- Jukka Suominen
Vastuuhenkilö
Jukka Suominen
Ryhmät
-
24AI231Sähkö- ja automaatiotekniikka, monimuotototeutus
Tavoitteet (OJ)
Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa
Sisältö (OJ)
Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.
Esitietovaatimukset (OJ)
Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.
Arviointikriteerit, tyydyttävä (1-2) (OJ)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit, hyvä (3-4) (OJ)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit, kiitettävä (5) (OJ)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Aika ja paikka
Ajankohdat ja paikat on ilmoitettu TUNIMoodlessa.
Tenttien ja uusintatenttien ajankohdat
Opintojakson koe pidetään 26.10.2024 klo 08.15-11.00 luokassa B2-25.
1. uusinta / korotus, 15.11.2024 klo 17.00-20.00 luokassa B2-25.
2. uusinta / korotus, 29.11.2024 klo 14.15-17.00 luokassa B2-25.
Ilmoittautuminen uusintakokeisiin viimeistään 3 päivää ennen koetta sähköpostitse osoitteeseen jukka.suominen@tuni.fi
Hyväksyttyä arvosanaa voi yrittää korottaa vain kerran.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Arviointimenetelmät ja arvioinnin perusteet
Opintojakso arvioidaan asteikolla 0-5.
Kotitehtävistä on mahdollista saada 1 piste / palautuskerta, yhteensä 6 pistettä. Kokeen maksimipistemäärä 34 pistettä. Yhteispistemäärä on täten 40 pistettä.
Arvosana määräytyy tehtyjen kotitehtävien ja kokeen yhteispistemäärän perusteella seuraavasti:
0 pistettä, arvosana 0
10 pistettä, arvosana 1
16 pistettä, arvosana 2
22 pistettä, arvosana 3
28 pistettä, arvosana 4
34 pistettä, arvosana 5
Arviointiasteikko
0-5
Opiskelumuodot ja opetusmenetelmät
- lähiopetus ja itsenäinen opiskelu
- tuntitehtävät, kotitehtävät
- koe
Oppimateriaalit
Opettajan jakama materiaali Moodlessa.
Kaavasto: Tekniikan kaavasto, Tammertekniikka.
Suositellaan hankittavaksi TI-nspire CX CAS-laskin.
Opiskelijan ajankäyttö ja kuormitus
Opiskelijan keskimääräinen työmäärä on 81 h, joka koostuu:
-lähiopetuksesta
-itsenäisestä työskentelystä (mm. kotitehtävät, opetusvideot)
-kokeesta
Opettajan pitämiä lähitunteja koe mukaan lukien on 27 h.
Sisällön jaksotus
- erotusosamäärä ja derivaatta
- derivaatta funktion ominaisuuksien kuvaajana
- muutosnopeustulkinta ja graafinen tulkinta
- derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
- derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät
- regressio ja pienimmän neliösumman menetelmä
Toteutuksen valinnaiset suoritustavat
Ei ole
Harjoittelu- ja työelämäyhteistyö
Ei ole.
Kansainvälisyys
-
Ilmoittautumisaika
07.06.2024 - 30.08.2024
Ajoitus
01.08.2024 - 27.10.2024
Laajuus
3 op
Toteutustapa
Lähiopetus
Yksikkö
TAMK Matematiikka ja fysiikka
Toimipiste
TAMK Pääkampus
Opetuskielet
- Suomi
Koulutus
- Konetekniikan tutkinto-ohjelma
Opettaja
- Nikolai Marjoma
- Pia Ruokonen-Kaukolinna
Vastuuhenkilö
Pia Ruokonen-Kaukolinna
Ryhmät
-
24AI112Konetekniikka 2024, monimuoto
Tavoitteet (OJ)
Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa
Sisältö (OJ)
Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.
Esitietovaatimukset (OJ)
Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.
Arviointikriteerit, tyydyttävä (1-2) (OJ)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit, hyvä (3-4) (OJ)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit, kiitettävä (5) (OJ)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Tenttien ja uusintatenttien ajankohdat
Opintojakso suoritetaan tehtävillä ja yhdellä kurssikokeella:
Kurssikoe 25.10. (aika ja paikka löytyy lukujärjestyksestä)
Opintojakson päätyttyä järjestetään kaksi uusintatenttiä
1. uusintakoe 15.11.2024 klo 13-16 (paikka ilmoitettu Moodlessa)
2. uusintakoe/korotus 13.12.2024 klo 13-16 (paikka ilmoitettu Moodlessa)
Uusinnat ja korotukset ovat vain ja ainoastaan tässä ilmoitettuna aikana, ei siis myöhemmin esim. seuraavana vuonna.
Uusintakokeeseen ja korotukseen ilmoittaudutaan Pakin kautta. Ilmoittautuminen päättyy aina koetta edeltävän viikon lauantaina.
Uusintaan osallistuminen edellyttää arvosanaa 0.
Yleiseti kokeesta:
Sairastapauksissa vaaditaan lääkärintodistus.
Poissaolo kokeesta vastaa hylättyä suoritusta.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Arviointimenetelmät ja arvioinnin perusteet
Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan kokeella, nettitehtävillä ja viikoittain tarkastettavilla harjoitustehtävillä,
Arvosteluun vaikuttavat nettitehtävät (6 p) , kotitehtävät (6 p) ja koe (28 p). Kokeiden arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää osallistumista opintojakson työmuotoihin (lähiopetus, nettitehtävien ja kotitehtävien teko sekä osallistuminen kokeeseen). Arvosanan 1 saa 12 pisteellä kurssin eri arviointimuotojen yhteenlasketusta maksimipistemäärästä, kuitenkin siten, että pisteistä 6 p on tultava kokeella.
Opintojakson aiheiden opettelussa ja kertauksessa on sallittua hyödyntää tekoälyä. Tehtävien ratkaisut pitää kuitenkin esittää toteutuksella opetettavin käsittein, merkinnöin ja menetelmin ja ratkaisun periaatteet ja välivaiheet on osattava selittää.
Uusinta- ja korotus:
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä-, nettitehtävä- eikä aiemmat koepisteet.
Arviointikriteeri - hylätty (0)
Opiskelija osallistuu säännöllisesti opetukseen ja sen työmuotoihin, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Mikäli edellä mainitut kriteerit eivät täyty, niin opiskelija poistetaan toteutukselta. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.
Arviointiasteikko
0-5
Opiskelumuodot ja opetusmenetelmät
Lähiopetus/etäopetus, itsenäinen opiskelu, videomateriaalit, tuntiharjoitukset ja kotitehtävät, nettitehtävät (STACK-tehtävät), kokeet.
Zoom-linkki löytyy kurssin Moodlesta.
Oppimateriaalit
Opettajan Moodlessa jakama materiaali (pdf-materiaalit, videot, interaktiiviset tehtävät)
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS/ TI-nspire CX II CAS -laskin.
Opiskelijan ajankäyttö ja kuormitus
Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
- opetuksesta, jossa opettaja mukana
- kotitehtävistä, nettitehtävistä ja mahdollisista ryhmätöistä (opettaja ei ole mukana),
- itsenäisestä työskentelystä
- kokeista
Opettajan pitämiä tunteja on n. 24 h.
Sisällön jaksotus
Sisällön jaksotus on suuntaa antava. Osa opsissa mainituista kokonaisuuksista on tarkoitus suorittaa itsenäisenä opiskeluna ja/tai ryhmätöinä.
-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät
Toteutuksen valinnaiset suoritustavat
Ei ole.
Harjoittelu- ja työelämäyhteistyö
Ei ole.
Kansainvälisyys
Ei ole.
Lisätietoja opiskelijoille
Opetus alkaa lukujärjestyksen mukaisesti.
Opintojaksoon tulee Moodle-toteutus. Toteutus ei näy automaattisesti, vaan se täytyy hakea kurssitunnuksella. Opettaja lähettää ilmoittautuneille ennen kurssin alkua Moodle-avaimen sähköpostilla. Etäopetuksen Zoom-linkki löytyy Moodlesta.
Huom!
Jo ensimmäisille tunneille saattaa tulla ennakko-opiskeltavaa, joten huolehdi, että ilmoittaudut kurssille hyvissä ajoin, jotta saat tiedon näistä mahdollisista tehtävistä.
Ilmoittautumisaika
22.11.2023 - 13.01.2024
Ajoitus
15.01.2024 - 20.02.2024
Laajuus
3 op
Toteutustapa
Lähiopetus
Yksikkö
TAMK Matematiikka ja fysiikka
Toimipiste
TAMK Pääkampus
Opetuskielet
- Suomi
Koulutus
- Laboratoriotekniikan tutkinto-ohjelma
Opettaja
- Jukka Suominen
Vastuuhenkilö
Jukka Suominen
Ryhmät
-
23LATELaboratoriotekniikka 2023
Tavoitteet (OJ)
Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa
Sisältö (OJ)
Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.
Esitietovaatimukset (OJ)
Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.
Arviointikriteerit, tyydyttävä (1-2) (OJ)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit, hyvä (3-4) (OJ)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit, kiitettävä (5) (OJ)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Aika ja paikka
Ajankohdat ja paikat on ilmoitettu TUNIMoodlessa.
Tenttien ja uusintatenttien ajankohdat
Opintojakson koe pidetään 20.02.2024 klo 08.15-11.00 juhlasalissa D1-04.
1. uusinta / korotus 27.03.2024 klo 17.00-20.00 luokissa B4-18 ja B4-27.
2. uusinta / korotus 17.04.2024 klo 17.00-20.00 luokissa B4-18 ja B4-27.
Ilmoittautuminen uusintakokeisiin viimeistään koetta edeltävänä sunnuntaina sähköpostitse.
Hyväksyttyä arvosanaa voi yrittää korottaa vain kerran.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Arviointimenetelmät ja arvioinnin perusteet
Opintojakso arvioidaan asteikolla 0-5.
Kotitehtävistä on mahdollista saada 1 piste / palautuskerta, yhteensä 7 pistettä. Kokeen maksimipistemäärä 43 pistettä. Yhteispistemäärä on täten 50 pistettä.
Arvosana määräytyy kotitehtävien ja kokeen yhteispistemäärän perusteella seuraavasti:
0 pistettä, arvosana 0
12,5 pistettä, arvosana 1
20 pistettä, arvosana 2
27,5 pistettä, arvosana 3
35 pistettä, arvosana 4
42,5 pistettä, arvosana 5
Arviointiasteikko
0-5
Opiskelumuodot ja opetusmenetelmät
- lähi/etäopetus ja itsenäinen opiskelu
- tuntitehtävät, kotitehtävät
- koe
Oppimateriaalit
Opettajan jakama materiaali Moodlessa
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS-laskin.
Opiskelijan ajankäyttö ja kuormitus
Opiskelijan keskimääräinen työmäärä on 81 h, joka koostuu:
-lähiopetuksesta
-itsenäisestä työskentelystä (mm. kotitehtävät, opetusvideot)
-kokeesta
Opettajan pitämiä lähitunteja koe mukaan lukien on 30 h.
Sisällön jaksotus
-erotusosamäärä ja derivaatta
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät
-regressio
Toteutuksen valinnaiset suoritustavat
-
Harjoittelu- ja työelämäyhteistyö
-
Kansainvälisyys
-
Lisätietoja opiskelijoille
Opetus alkaa 15.01.2024 lukujärjestyksen mukaisesti.
Ilmoittautumisaika
22.11.2023 - 13.01.2024
Ajoitus
15.01.2024 - 20.02.2024
Laajuus
3 op
Toteutustapa
Lähiopetus
Yksikkö
Rakennettu ympäristö ja biotalous
Toimipiste
TAMK Pääkampus
Opetuskielet
- Suomi
Koulutus
- Biotuotetekniikan tutkinto-ohjelma
Opettaja
- Jukka Suominen
Vastuuhenkilö
Jukka Suominen
Ryhmät
-
23BIOTBBiotuotetekniikan tutkinto-ohjelma, syksy 2023
Tavoitteet (OJ)
Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa
Sisältö (OJ)
Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.
Esitietovaatimukset (OJ)
Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.
Arviointikriteerit, tyydyttävä (1-2) (OJ)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit, hyvä (3-4) (OJ)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit, kiitettävä (5) (OJ)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Aika ja paikka
Ajankohdat ja paikat on ilmoitettu TUNIMoodlessa.
Tenttien ja uusintatenttien ajankohdat
Opintojakson koe pidetään 20.02.2024 klo 08.00-11.00 juhlasalissa D1-04.
1. uusinta / korotus 27.03.2024 klo 17.00-20.00 luokissa B4-18 ja B4-27.
2. uusinta / korotus 17.04.2024 klo 17.00-20.00 luokissa B4-18 ja B4-27.
Ilmoittautuminen uusintakokeisiin viimeistään koetta edeltävänä sunnuntaina sähköpostitse.
Hyväksyttyä arvosanaa voi yrittää korottaa vain kerran.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Arviointimenetelmät ja arvioinnin perusteet
Opintojakso arvioidaan asteikolla 0-5.
Kotitehtävistä on mahdollista saada 1 piste / palautuskerta, yhteensä 7 pistettä. Kokeen maksimipistemäärä 43 pistettä. Yhteispistemäärä on täten 50 pistettä.
Arvosana määräytyy kotitehtävien ja kokeen yhteispistemäärän perusteella seuraavasti:
0 pistettä, arvosana 0
12,5 pistettä, arvosana 1
20 pistettä, arvosana 2
27,5 pistettä, arvosana 3
35 pistettä, arvosana 4
42,5 pistettä, arvosana 5
Arviointiasteikko
0-5
Opiskelumuodot ja opetusmenetelmät
- lähi/etäopetus ja itsenäinen opiskelu
- tuntitehtävät, kotitehtävät
- koe
Oppimateriaalit
Opettajan jakama materiaali Moodlessa
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS-laskin.
Opiskelijan ajankäyttö ja kuormitus
Opiskelijan keskimääräinen työmäärä on 81 h, joka koostuu:
-lähiopetuksesta
-itsenäisestä työskentelystä (mm. kotitehtävät, opetusvideot)
-kokeesta
Opettajan pitämiä lähitunteja koe mukaan lukien on 30 h.
Sisällön jaksotus
-erotusosamäärä ja derivaatta
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät
-regressio
Toteutuksen valinnaiset suoritustavat
-
Harjoittelu- ja työelämäyhteistyö
-
Kansainvälisyys
-
Lisätietoja opiskelijoille
Opetus alkaa 15.01.2024 lukujärjestyksen mukaisesti.
Ilmoittautumisaika
02.12.2023 - 11.01.2024
Ajoitus
08.01.2024 - 24.02.2024
Laajuus
3 op
Toteutustapa
Lähiopetus
Yksikkö
TAMK Matematiikka ja fysiikka
Toimipiste
TAMK Pääkampus
Opetuskielet
- Suomi
Koulutus
- Konetekniikan tutkinto-ohjelma
Opettaja
- Ulla Miekkala
Vastuuhenkilö
Ulla Miekkala
Ryhmät
-
23I112BKonetekniikka 2023
Tavoitteet (OJ)
Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa
Sisältö (OJ)
Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.
Esitietovaatimukset (OJ)
Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.
Arviointikriteerit, tyydyttävä (1-2) (OJ)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit, hyvä (3-4) (OJ)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit, kiitettävä (5) (OJ)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Aika ja paikka
Toteutus kestää 3. periodin ja opetus viikoittain:
ti 14-17 B4-27 (n. 40 mahtuu lähiopetukseen, loput voi osallistua zoomin välityksellä)
to 11-14 B2-35 (n. 40 mahtuu lähiopetukseen, loput voi osallistua zoomin välityksellä)
Tenttien ja uusintatenttien ajankohdat
Opintojakson välikokeet pidetään
1. välikoe ti 30.1. klo 14-16 (alustava aika, voi tulla muutoksia).
2. välikoe to 22.2. klo 12-14 (alustava aika, voi tulla muutoksia).
Uusintaan osallistuminen edellyttää arvosanaa nolla.
1. uusintakoe ke 27.3.2024 klo 17-20 B4-kerros
2. uusintakoe/ korotus ke 17.4.2024 klo 17-20 B4-kerros
Hyväksyttyä arvosanaa voi korottaa 2. uusintakokeessa.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Uusintakokeeseen ja korotukseen ilmoittaudutaan TAMKin tenttijärjestelmän kautta.
Arviointimenetelmät ja arvioinnin perusteet
Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan kahdella välikokeella, nettitehtävillä ja viikoittain tarkastettavilla harjoitustehtävillä. Molempiin välikokeisiin pitää osallistua.
Arvosteluun vaikuttavat nettitehtävät 15 %, välikokeet 75 % ja kotitehtävät 10 %. Kokeiden arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan, nettitehtävien ja kotitehtävien tekoa sekä molempiin välikokeisiin osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois. Arvosanan 1 saa pistemäärällä, joka on 30 % kurssin eri arviointimuotojen yhteenlasketusta maksimipistemäärästä, kuitenkin siten, että vähintään 15 % pisteistä on kokeista.
Uusinta- ja korotus:
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä-, nettitehtävä- eikä välikoepisteet.
Arviointiasteikko
0-5
Opiskelumuodot ja opetusmenetelmät
Lähi- ja etäopetus yhdessä sähkö- ja automaatiotekniikan ryhmän 23I231B kanssa. N. 40 mahtuu lähiopetukseen, loput voi osallistua opetukseen zoomin välityksellä.
Itsenäinen opiskelu, tuntiharjoitukset ja kotitehtävät, videomateriaalit, nettitehtävät, 2 välikoetta koululla.
Oppimateriaalit
Opettajan Moodlessa jakama materiaali (opetusmonisteet, videot, STACK-tehtävät)
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS/ TI-nspire CX II CAS -laskin.
Opiskelijan ajankäyttö ja kuormitus
Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-opetuksesta, jossa opettaja mukana (lähi- tai Zoom-tunnit)
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, nettitehtävät, opetusvideot)
-kokeista
Opettajan pitämiä lähitunteja on n. 30 h
Sisällön jaksotus
-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät
Lisätietoja opiskelijoille
Opetus alkaa viikolla 2 lukujärjestyksen mukaisesti eli ti 9.1.2024
Opintojaksoon on Moodle-toteutus.
Ilmoittautumisaika
02.12.2023 - 11.01.2024
Ajoitus
08.01.2024 - 03.03.2024
Laajuus
3 op
Toteutustapa
Lähiopetus
Yksikkö
TAMK Matematiikka ja fysiikka
Toimipiste
TAMK Pääkampus
Opetuskielet
- Suomi
Paikat
0 - 40
Koulutus
- Sähkö- ja automaatiotekniikan tutkinto-ohjelma
Opettaja
- Ulla Miekkala
Vastuuhenkilö
Ulla Miekkala
Ryhmät
-
23I231BSähkö- ja automaatiotekniikka
Tavoitteet (OJ)
Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa
Sisältö (OJ)
Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.
Esitietovaatimukset (OJ)
Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.
Arviointikriteerit, tyydyttävä (1-2) (OJ)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit, hyvä (3-4) (OJ)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit, kiitettävä (5) (OJ)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Aika ja paikka
Toteutus kestää 3. periodin ja opetus viikoittain:
ti 14-17 B4-27 (n. 40 mahtuu lähiopetukseen, loput voi osallistua zoomin välityksellä)
to 11-14 B2-35 (n. 40 mahtuu lähiopetukseen, loput voi osallistua zoomin välityksellä)
Tenttien ja uusintatenttien ajankohdat
Opintojakson välikokeet pidetään
1. välikoe ti 30.1. klo 14-16 (alustava aika, voi tulla muutoksia).
2. välikoe to 22.2. klo 12-14 (alustava aika, voi tulla muutoksia).
Uusintaan osallistuminen edellyttää arvosanaa nolla.
1. uusintakoe ke 27.3.2024 klo 17-20 B4-kerros
2. uusintakoe/ korotus ke 17.4.2024 klo 17-20 B4-kerros
Hyväksyttyä arvosanaa voi korottaa 2. uusintakokeessa.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Uusintakokeeseen ja korotukseen ilmoittaudutaan TAMKin tenttijärjestelmän kautta.
Arviointimenetelmät ja arvioinnin perusteet
Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan kahdella välikokeella, nettitehtävillä ja viikoittain tarkastettavilla harjoitustehtävillä. Molempiin välikokeisiin pitää osallistua.
Arvosteluun vaikuttavat nettitehtävät 15 %, välikokeet 75 % ja kotitehtävät 10 %. Kokeiden arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan, nettitehtävien ja kotitehtävien tekoa sekä molempiin välikokeisiin osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois. Arvosanan 1 saa pistemäärällä, joka on 30 % kurssin eri arviointimuotojen yhteenlasketusta maksimipistemäärästä, kuitenkin siten, että vähintään 15 % pisteistä on kokeista.
Uusinta- ja korotus:
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä-, nettitehtävä- eikä välikoepisteet.
Arviointiasteikko
0-5
Opiskelumuodot ja opetusmenetelmät
Lähi- ja etäopetus yhdessä konetekniikan ryhmän 23I112B kanssa. N. 40 mahtuu lähiopetukseen, loput voi osallistua opetukseen zoomin välityksellä.
Itsenäinen opiskelu, tuntiharjoitukset ja kotitehtävät, videomateriaalit, nettitehtävät, 2 välikoetta koululla.
Oppimateriaalit
Opettajan Moodlessa jakama materiaali (opetusmonisteet, videot, STACK-tehtävät)
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS/ TI-nspire CX II CAS -laskin.
Opiskelijan ajankäyttö ja kuormitus
Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-opetuksesta, jossa opettaja mukana (lähi- tai Zoom-tunnit)
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, nettitehtävät, opetusvideot)
-kokeista
Opettajan pitämiä lähitunteja on n. 30 h
Sisällön jaksotus
-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät
Lisätietoja opiskelijoille
Opetus alkaa viikolla 2 lukujärjestyksen mukaisesti eli ti 9.1.2024
Opintojaksoon on Moodle-toteutus.
Ilmoittautumisaika
02.12.2023 - 12.01.2024
Ajoitus
01.01.2024 - 03.03.2024
Laajuus
3 op
Toteutustapa
Lähiopetus
Toimipiste
TAMK Pääkampus
Opetuskielet
- Suomi
Koulutus
- Autotekniikan tutkinto-ohjelma
Opettaja
- Sara Nortunen
Vastuuhenkilö
Sara Nortunen
Ryhmät
-
23AUTOBAutotekniikka 2023
Tavoitteet (OJ)
Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa
Sisältö (OJ)
Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.
Esitietovaatimukset (OJ)
Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.
Arviointikriteerit, tyydyttävä (1-2) (OJ)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit, hyvä (3-4) (OJ)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit, kiitettävä (5) (OJ)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Tenttien ja uusintatenttien ajankohdat
Opintojakson koe pidetään 19.2.2023 tuntiaikaan (alustava aika, voi tulla muutoksia).
Uusintaan osallistuminen edellyttää arvosanaa nolla.
1. uusinta 27.3.2023 klo 17.00-20.00 luokassa x.
2. uusinta/korotus 17.4.2023 klo 17.00-20.00 luokassa x.
Hyväksyttyä arvosanaa voi korottaa 2. uusintakokeessa.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Uusintakokeeseen ja korotukseen ilmoittaudutaan TAMKin tenttijärjestelmän kautta.
Arviointimenetelmät ja arvioinnin perusteet
Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan kokeella ja viikoittain tarkastettavilla harjoitustehtävillä, joiden tekeminen vaikuttaa arvosanaan. Kotitehtäväpisteiden saamiseksi tehtävät on palautettava kirjallisesti (tarkemmat ohjeet Moodlessa). Opintojaksoon saattaa sisältyä myös ryhmässä tehtäviä osioita. Kokeen arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan, kotitehtävien aktiivista tekemistä (vähintään 30%) sekä kurssikokeeseen osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois.
Harjoitustehtävillä saa lisäpisteitä oheisen taulukon mukaan:
yli 30% : 1
yli 50%: 2
yli 70% : 3
yli 90% : 4
Harjoitustehtäväpisteet eivät vaikuta kurssin läpipääsyyn vaan niillä voi korottaa arvosanaa. Lopullinen arvosana määräytyy koepisteiden ja harjoitustehtäväpisteiden yhteismäärästä sekä osallistumisaktiivisuudesta. Harjoitustehtäväpisteitä ei huomioida enää uusinta- ja korotustenttien yhteydessä.
Arviointikriteeri -hylätty(0):
Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.
Arviointiasteikko
0-5
Opiskelumuodot ja opetusmenetelmät
lähiopetus
etäopetus
ryhmätyö
harjoitukset
kurssikoe
uusintatentti
Oppimateriaalit
Opettajan jakama materiaali
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS-laskin.
Opiskelijan ajankäyttö ja kuormitus
Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-lähi/etäopetuksesta, jossa opettajaja mukana
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, STACK-tehtävät, opetusvideot)
-kokeesta
Opettajan pitämiä oppitunteja on n. 27-30 h.
Sisällön jaksotus
-regressio
-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät
Lisätietoja opiskelijoille
Opetus alkaa 8.1. lukujärjestyksen mukaisesti.
Opintojaksoon on Moodle-toteutus. Oppitunnit pyritään pitämään lähiopetuksena etämahdollisuuden kanssa. Etäopetuksen Zoom-linkki on annettu Moodlessa. Tarvittaessa oppitunnit pidetään kokonaan etänä.
Ilmoittautumisaika
02.12.2023 - 11.01.2024
Ajoitus
01.01.2024 - 03.03.2024
Laajuus
3 op
Toteutustapa
Lähiopetus
Yksikkö
TAMK Matematiikka ja fysiikka
Toimipiste
TAMK Pääkampus
Opetuskielet
- Suomi
Koulutus
- Konetekniikan tutkinto-ohjelma
Opettaja
- Kirsi-Maria Rinneheimo
Vastuuhenkilö
Kirsi-Maria Rinneheimo
Ryhmät
-
23I112AKonetekniikka 2023
Tavoitteet (OJ)
Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa
Sisältö (OJ)
Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.
Esitietovaatimukset (OJ)
Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.
Arviointikriteerit, tyydyttävä (1-2) (OJ)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit, hyvä (3-4) (OJ)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit, kiitettävä (5) (OJ)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Aika ja paikka
Toteutus kestää 3. periodin ja opetus viikoittain:
ti 11-14 B2-35 (n. 40 mahtuu lähiopetukseen, loput voi osallistua zoomin välityksellä)
to 14-17 B2-35 (n. 40 mahtuu lähiopetukseen, loput voi osallistua zoomin välityksellä)
Tenttien ja uusintatenttien ajankohdat
Opintojakson välikokeet pidetään
1. välikoe ti 30.1. klo 11-13 (alustava aika, voi tulla muutoksia).
2. välikoe ti 20.2. klo 11-13 (alustava aika, voi tulla muutoksia).
Uusintaan osallistuminen edellyttää arvosanaa nolla.
1. uusintakoe ke 27.3.2024 klo 17-20 B4-kerros
2. uusintakoe/ korotus ke 17.4.2024 klo 17-20 B4-kerros
Hyväksyttyä arvosanaa voi korottaa 2. uusintakokeessa.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Uusintakokeeseen ja korotukseen ilmoittaudutaan TAMKin tenttijärjestelmän kautta.
Arviointimenetelmät ja arvioinnin perusteet
Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan kahdella välikokeella, nettitehtävillä ja viikoittain tarkastettavilla harjoitustehtävillä. Molempiin välikokeisiin pitää osallistua.
Arvosteluun vaikuttavat nettitehtävät 15 %, välikokeet 75 % ja kotitehtävät 10 %. Kokeiden arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan, nettitehtävien ja kotitehtävien tekoa sekä molempiin välikokeisiin osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois. Arvosanan 1 saa pistemäärällä, joka on 30 % kurssin eri arviointimuotojen yhteenlasketusta maksimipistemäärästä, kuitenkin siten, että vähintään 15 % pisteistä on kokeista.
Uusinta- ja korotus:
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä-, nettitehtävä- eikä välikoepisteet.
Arviointiasteikko
0-5
Opiskelumuodot ja opetusmenetelmät
Lähi- ja etäopetus yhdessä ryhmien 23I112A ja 23I112C kanssa. N. 40 mahtuu lähiopetukseen, loput voi osallistua opetukseen Zoomin välityksellä.
Itsenäinen opiskelu, tuntiharjoitukset ja kotitehtävät, videomateriaalit, nettitehtävät, 2 välikoetta koululla.
Oppimateriaalit
Opettajan Moodlessa jakama materiaali (opetusmonisteet, videot, STACK-tehtävät)
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS/ TI-nspire CX II CAS -laskin.
Opiskelijan ajankäyttö ja kuormitus
Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-opetuksesta, jossa opettaja mukana (lähi- tai Zoom-tunnit)
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, nettitehtävät, opetusvideot)
-kokeista
Opettajan pitämiä lähitunteja on n. 30 h
Sisällön jaksotus
-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät
Lisätietoja opiskelijoille
Opetus alkaa viikolla 2 lukujärjestyksen mukaisesti eli ti 9.1.2024
Opintojaksoon on Moodle-toteutus.
Ilmoittautumisaika
02.12.2023 - 11.01.2024
Ajoitus
01.01.2024 - 03.03.2024
Laajuus
3 op
Toteutustapa
Lähiopetus
Yksikkö
TAMK Matematiikka ja fysiikka
Toimipiste
TAMK Pääkampus
Opetuskielet
- Suomi
Koulutus
- Konetekniikan tutkinto-ohjelma
Opettaja
- Kirsi-Maria Rinneheimo
Vastuuhenkilö
Kirsi-Maria Rinneheimo
Ryhmät
-
23I112CKonetekniikka 2023
Tavoitteet (OJ)
Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa
Sisältö (OJ)
Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.
Esitietovaatimukset (OJ)
Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.
Arviointikriteerit, tyydyttävä (1-2) (OJ)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit, hyvä (3-4) (OJ)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit, kiitettävä (5) (OJ)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Aika ja paikka
Toteutus kestää 3. periodin ja opetus viikoittain:
ti 11-14 B2-35 (n. 40 mahtuu lähiopetukseen, loput voi osallistua zoomin välityksellä)
to 14-17 B2-35 (n. 40 mahtuu lähiopetukseen, loput voi osallistua zoomin välityksellä)
Tenttien ja uusintatenttien ajankohdat
Opintojakson välikokeet pidetään
1. välikoe ti 30.1. klo 11-13 (alustava aika, voi tulla muutoksia).
2. välikoe ti 20.2. klo 11-13 (alustava aika, voi tulla muutoksia).
Uusintaan osallistuminen edellyttää arvosanaa nolla.
1. uusintakoe ke 27.3.2024 klo 17-20 B4-kerros
2. uusintakoe/ korotus ke 17.4.2024 klo 17-20 B4-kerros
Hyväksyttyä arvosanaa voi korottaa 2. uusintakokeessa.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Uusintakokeeseen ja korotukseen ilmoittaudutaan TAMKin tenttijärjestelmän kautta.
Arviointimenetelmät ja arvioinnin perusteet
Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan kahdella välikokeella, nettitehtävillä ja viikoittain tarkastettavilla harjoitustehtävillä. Molempiin välikokeisiin pitää osallistua.
Arvosteluun vaikuttavat nettitehtävät 15 %, välikokeet 75 % ja kotitehtävät 10 %. Kokeiden arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan, nettitehtävien ja kotitehtävien tekoa sekä molempiin välikokeisiin osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois. Arvosanan 1 saa pistemäärällä, joka on 30 % kurssin eri arviointimuotojen yhteenlasketusta maksimipistemäärästä, kuitenkin siten, että vähintään 15 % pisteistä on kokeista.
Uusinta- ja korotus:
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä-, nettitehtävä- eikä välikoepisteet.
Arviointiasteikko
0-5
Opiskelumuodot ja opetusmenetelmät
Lähi- ja etäopetus yhdessä ryhmien 23I112A ja 23I112C kanssa. N. 40 mahtuu lähiopetukseen, loput voi osallistua opetukseen Zoomin välityksellä.
Itsenäinen opiskelu, tuntiharjoitukset ja kotitehtävät, videomateriaalit, nettitehtävät, 2 välikoetta koululla.
Oppimateriaalit
Opettajan Moodlessa jakama materiaali (opetusmonisteet, videot, STACK-tehtävät)
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS/ TI-nspire CX II CAS -laskin.
Opiskelijan ajankäyttö ja kuormitus
Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-opetuksesta, jossa opettaja mukana (lähi- tai Zoom-tunnit)
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, nettitehtävät, opetusvideot)
-kokeista
Opettajan pitämiä lähitunteja on n. 30 h
Sisällön jaksotus
-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät
Lisätietoja opiskelijoille
Opetus alkaa viikolla 2 lukujärjestyksen mukaisesti eli ti 9.1.2024
Opintojaksoon on Moodle-toteutus.
Ilmoittautumisaika
22.11.2023 - 05.01.2024
Ajoitus
01.01.2024 - 31.07.2024
Laajuus
3 op
Toteutustapa
Lähiopetus
Yksikkö
TAMK Matematiikka ja fysiikka
Toimipiste
TAMK Pääkampus
Opetuskielet
- Suomi
Koulutus
- Laboratoriotekniikan tutkinto-ohjelma
Opettaja
- Jukka Suominen
Vastuuhenkilö
Jukka Suominen
Ryhmät
-
23LATELABLaboratoriotekniikka 2023, monimuoto
Tavoitteet (OJ)
Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa
Sisältö (OJ)
Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.
Esitietovaatimukset (OJ)
Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.
Arviointikriteerit, tyydyttävä (1-2) (OJ)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit, hyvä (3-4) (OJ)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit, kiitettävä (5) (OJ)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Aika ja paikka
Ajankohdat ja paikat on ilmoitettu TUNIMoodlessa.
Tenttien ja uusintatenttien ajankohdat
Opintojakson koe pidetään 20.05.2024 klo 16.15-19.00 luokassa B2-35.
1. uusinta / korotus 28.05.2024 klo 19.00-22.00 etäkoe. / 03.06.2024 klo 18.00-21.00 etäkoe.
2. uusinta / korotus 23.08.2024 klo 18.00-21.00 etäkoe.
Ilmoittautuminen uusintakokeisiin viimeistään koetta edeltävänä sunnuntaina sähköpostitse.
Hyväksyttyä arvosanaa voi yrittää korottaa vain kerran.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Arviointimenetelmät ja arvioinnin perusteet
Opintojakso arvioidaan asteikolla 0-5.
Kotitehtävistä on mahdollista saada 1 piste / palautuskerta, yhteensä 8 pistettä. Kokeen maksimipistemäärä 32 pistettä. Yhteispistemäärä on täten 40 pistettä.
Arvosana määräytyy kotitehtävien ja kokeen yhteispistemäärän perusteella seuraavasti:
0 pistettä, arvosana 0
10 pistettä, arvosana 1
16 pistettä, arvosana 2
22 pistettä, arvosana 3
28 pistettä, arvosana 4
34 pistettä, arvosana 5
Arviointiasteikko
0-5
Opiskelumuodot ja opetusmenetelmät
- etäopetus ja itsenäinen opiskelu
- tuntitehtävät, kotitehtävät
- koe
Oppimateriaalit
Opettajan jakama materiaali Moodlessa
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS-laskin.
Opiskelijan ajankäyttö ja kuormitus
Opiskelijan keskimääräinen työmäärä on 81 h, joka koostuu:
-lähiopetuksesta
-itsenäisestä työskentelystä (mm. kotitehtävät, opetusvideot)
-kokeesta
Opettajan pitämiä lähitunteja koe mukaan lukien on 30 h.
Sisällön jaksotus
-erotusosamäärä ja derivaatta
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät
-regressio
Toteutuksen valinnaiset suoritustavat
-
Harjoittelu- ja työelämäyhteistyö
-
Kansainvälisyys
-
Lisätietoja opiskelijoille
Opetus alkaa 13.01.2024 lukujärjestyksen mukaisesti.
Ilmoittautumisaika
01.12.2023 - 04.01.2024
Ajoitus
01.01.2024 - 03.03.2024
Laajuus
3 op
Toteutustapa
Lähiopetus
Yksikkö
TAMK Matematiikka ja fysiikka
Toimipiste
TAMK Pääkampus
Opetuskielet
- Suomi
Koulutus
- Rakennustekniikan tutkinto-ohjelma
Opettaja
- Pia Ruokonen-Kaukolinna
Vastuuhenkilö
Pia Ruokonen-Kaukolinna
Ryhmät
-
23RTARakennustekniikka
Tavoitteet (OJ)
Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa
Sisältö (OJ)
Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.
Esitietovaatimukset (OJ)
Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.
Arviointikriteerit, tyydyttävä (1-2) (OJ)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit, hyvä (3-4) (OJ)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit, kiitettävä (5) (OJ)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Tenttien ja uusintatenttien ajankohdat
Opintojakso suoritetaan viikottaisilla harjoitustehtävillä, nettitehtävillä ja kokeilla, joiden ajat varmistetaan vielä kurssin aikana. Huom! koeaika mahdollisesti muu kuin normaali tuntiaika
Alustavat ajat (näihin voi tulla muutoksia, joista tiedotetaan tunneilla ja sähköpostilla)
1. välikoe (aika ilmoitetaan kurssin aikana,)
2. välikoe 23.2.2024
Välikokeita ei voi uusia eikä korottaa.
Koko kurssin uusintakokeet järjestetään seuraavasti:
1. uusintakoe 27.3.2024 klo 17-20 (luokkatilat B4-27 ja B4-18)
2. uusintakoe/ korotus 17.4.2023 klo 17-20 (luokkatilat B4-27 ja B4-18)
Uusinnat ja korotukset ovat vain ja ainoastaan tässä ilmoitettuna aikana, ei siis myöhemmin esim. seuraavana vuonna.
Uusintakokeeseen ja korotukseen ilmoittaudutaan Pakin kautta.
Uusintaan osallistuminen edellyttää arvosanaa 0.
Yleiseti kokeesta:
Sairastapauksissa vaaditaan lääkärintodistus.
Poissaolo kokeesta vastaa hylättyä suoritusta.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Arviointimenetelmät ja arvioinnin perusteet
Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan välikokeilla, nettitehtävillä ja viikoittain tarkastettavilla harjoitustehtävillä,
Arvosteluun vaikuttavat nettitehtävät 15 % (max. 6 p) , kotitehtävät 10 % (max. 4 p) ja välikokeet 75 % (max. 30 p). Kokeiden arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan, nettitehtävien ja kotitehtävien tekoa sekä kokeisiin osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunteja seurataan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois. Arvosanan 1 saa pistemäärällä, joka on 30 % (12 p) kurssin eri arviointimuotojen yhteenlasketusta maksimipistemäärästä, kuitenkin siten, että 15 % ( 6 p) on kokeesta.
Uusinta- ja korotus:
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä-, nettitehtävä- eikä aiemmat koepisteet.
Yksittäisiä välikokeita ei voi uusia eikä korottaa.
Arviointikriteeri - hylätty (0)
Opiskelija osallistuu säännöllisesti opetukseen ja sen työmuotoihin, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Mikäli edellä mainitut kriteerit eivät täyty, niin opiskelija poistetaan toteutukselta. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.
Arviointiasteikko
0-5
Opiskelumuodot ja opetusmenetelmät
Lähiopetus/etäopetus, itsenäinen opiskelu, videomateriaalit, tuntiharjoitukset ja kotitehtävät, nettitehtävät (STACK-tehtävät), kokeet.
Zoom-linkki löytyy kurssin Moodlesta.
Oppimateriaalit
Opettajan Moodlessa jakama materiaali (pdf-materiaalit, videot, interaktiiviset tehtävät)
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS/ TI-nspire CX II CAS -laskin.
Opiskelijan ajankäyttö ja kuormitus
Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
- opetuksesta, jossa opettaja mukana
- kotitehtävistä, nettitehtävistä ja mahdollisista ryhmätöistä (opettaja ei ole mukana),
- itsenäisestä työskentelystä
- kokeista
Opettajan pitämiä tunteja on n. 30 h.
Sisällön jaksotus
Sisällön jaksotus on suuntaa antava. Osa opsissa mainituista kokonaisuuksista on tarkoitus suorittaa itsenäisenä opiskeluna ja/tai ryhmätöinä.
-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät
Lisätietoja opiskelijoille
Opetus alkaa lukujärjestyksen mukaisesti viikolla 2.
Opintojaksoon tulee Moodle-toteutus. Toteutus ei näy automaattisesti, vaan se täytyy hakea kurssitunnuksella. Opettaja lähettää ilmoittautuneille ennen kurssin alkua Moodle-avaimen sähköpostilla. Etäopetuksen Zoom-linkki löytyy Moodlesta.
Toteutukset 5N00EG74-3101 (23RTA) ja 5N00EG74-3106 (23RTD) opetetaan yhdessä ja näillä on yhteinen Moodle, joka on nimetty 5N00EG74-3101/-3106 Differentiaalilaskenta (23RTA, 23RTD)
Ilmoittautumisaika
01.12.2023 - 04.01.2024
Ajoitus
01.01.2024 - 04.03.2024
Laajuus
3 op
Toteutustapa
Lähiopetus
Yksikkö
TAMK Matematiikka ja fysiikka
Toimipiste
TAMK Pääkampus
Opetuskielet
- Suomi
Koulutus
- Talotekniikan tutkinto-ohjelma, LVI-talotekniikka
Opettaja
- Pia Ruokonen-Kaukolinna
Vastuuhenkilö
Pia Ruokonen-Kaukolinna
Ryhmät
-
23I253LVI-talotekniikka
Tavoitteet (OJ)
Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa
Sisältö (OJ)
Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.
Esitietovaatimukset (OJ)
Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.
Arviointikriteerit, tyydyttävä (1-2) (OJ)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit, hyvä (3-4) (OJ)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit, kiitettävä (5) (OJ)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Tenttien ja uusintatenttien ajankohdat
Opintojakso suoritetaan viikottaisilla harjoitustehtävillä, nettitehtävillä ja kokeilla, joiden ajat varmistetaan vielä kurssin aikana. Huom! koeaika mahdollisesti muu kuin normaali tuntiaika
Alustavat ajat (näihin voi tulla muutoksia, joista tiedotetaan tunneilla ja sähköpostilla)
1. välikoe (aika ilmoitetaan kurssin aikana,)
2. välikoe 22.2.2024
Välikokeita ei voi uusia eikä korottaa.
Koko kurssin uusintakokeet järjestetään seuraavasti:
1. uusintakoe 27.3.2024 klo 17-20 (luokkatilat B4-27 ja B4-18)
2. uusintakoe/ korotus 17.4.2023 klo 17-20 (luokkatilat B4-27 ja B4-18)
Uusinnat ja korotukset ovat vain ja ainoastaan tässä ilmoitettuna aikana, ei siis myöhemmin esim. seuraavana vuonna.
Uusintakokeeseen ja korotukseen ilmoittaudutaan Pakin kautta.
Uusintaan osallistuminen edellyttää arvosanaa 0.
Yleiseti kokeesta:
Sairastapauksissa vaaditaan lääkärintodistus.
Poissaolo kokeesta vastaa hylättyä suoritusta.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Arviointimenetelmät ja arvioinnin perusteet
Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan välikokeilla, nettitehtävillä ja viikoittain tarkastettavilla harjoitustehtävillä,
Arvosteluun vaikuttavat nettitehtävät 15 %, kotitehtävät 10 % ja viikkokokeet/välikokeet 75 %. Kokeiden arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan, nettitehtävien ja kotitehtävien tekoa sekä kokeisiin osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunteja seurataan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois. Arvosanan 1 saa pistemäärällä, joka on 30 % kurssin eri arviointimuotojen yhteenlasketusta maksimipistemäärästä, kuitenkin siten, että 15 % on kokeesta.
Uusinta- ja korotus:
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä-, nettitehtävä- eikä aiemmat koepisteet.
Yksittäisiä välikokeita ei voi uusia eikä korottaa.
Arviointikriteeri - hylätty (0)
Opiskelija osallistuu säännöllisesti opetukseen ja sen työmuotoihin, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Mikäli edellä mainitut kriteerit eivät täyty, niin opiskelija poistetaan toteutukselta. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.
Arviointiasteikko
0-5
Opiskelumuodot ja opetusmenetelmät
Lähiopetus/etäopetus, itsenäinen opiskelu, videomateriaalit, tuntiharjoitukset ja kotitehtävät, nettitehtävät (STACK-tehtävät), kokeet.
Zoom-linkki löytyy kurssin Moodlesta.
Oppimateriaalit
Opettajan Moodlessa jakama materiaali (pdf-materiaalit, videot, interaktiiviset tehtävät)
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS/ TI-nspire CX II CAS -laskin.
Opiskelijan ajankäyttö ja kuormitus
Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
- opetuksesta, jossa opettaja mukana
- kotitehtävistä, nettitehtävistä ja mahdollisista ryhmätöistä (opettaja ei ole mukana),
- itsenäisestä työskentelystä
- kokeista
Opettajan pitämiä tunteja on n. 30 h.
Sisällön jaksotus
Sisällön jaksotus on suuntaa antava. Osa opsissa mainituista kokonaisuuksista on tarkoitus suorittaa itsenäisenä opiskeluna ja/tai ryhmätöinä.
-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät
Lisätietoja opiskelijoille
Opetus alkaa lukujärjestyksen mukaisesti viikolla 2.
Opintojaksoon tulee Moodle-toteutus. Toteutus ei näy automaattisesti, vaan se täytyy hakea kurssitunnuksella. Opettaja lähettää ilmoittautuneille ennen kurssin alkua Moodle-avaimen sähköpostilla. Etäopetuksen Zoom-linkki löytyy Moodlesta.
Toteutukset 5N00EG74-3102 (23I253) ja 5N00EG74-3103 (23I254) opetetaan yhdessä ja näillä on yhteinen Moodle, joka on nimetty 5N00EG74-3102/-3103 Differentiaalilaskenta (23I253, 23I254)
Ilmoittautumisaika
01.12.2023 - 04.01.2024
Ajoitus
01.01.2024 - 04.03.2024
Laajuus
3 op
Toteutustapa
Lähiopetus
Yksikkö
TAMK Matematiikka ja fysiikka
Toimipiste
TAMK Pääkampus
Opetuskielet
- Suomi
Koulutus
- Talotekniikan tutkinto-ohjelma, Sähköinen talotekniikka
Opettaja
- Pia Ruokonen-Kaukolinna
Vastuuhenkilö
Pia Ruokonen-Kaukolinna
Ryhmät
-
23I254Sähköinen talotekniikka
Tavoitteet (OJ)
Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa
Sisältö (OJ)
Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.
Esitietovaatimukset (OJ)
Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.
Arviointikriteerit, tyydyttävä (1-2) (OJ)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit, hyvä (3-4) (OJ)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit, kiitettävä (5) (OJ)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Tenttien ja uusintatenttien ajankohdat
Opintojakso suoritetaan viikottaisilla harjoitustehtävillä, nettitehtävillä ja kokeilla, joiden ajat varmistetaan vielä kurssin aikana. Huom! koeaika mahdollisesti muu kuin normaali tuntiaika
Alustavat ajat (näihin voi tulla muutoksia, joista tiedotetaan tunneilla ja sähköpostilla)
1. välikoe (aika ilmoitetaan kurssin aikana,)
2. välikoe 22.2.2024
Välikokeita ei voi uusia eikä korottaa.
Koko kurssin uusintakokeet järjestetään seuraavasti:
1. uusintakoe 27.3.2024 klo 17-20 (luokkatilat B4-27 ja B4-18)
2. uusintakoe/ korotus 17.4.2023 klo 17-20 (luokkatilat B4-27 ja B4-18)
Uusinnat ja korotukset ovat vain ja ainoastaan tässä ilmoitettuna aikana, ei siis myöhemmin esim. seuraavana vuonna.
Uusintakokeeseen ja korotukseen ilmoittaudutaan Pakin kautta.
Uusintaan osallistuminen edellyttää arvosanaa 0.
Yleiseti kokeesta:
Sairastapauksissa vaaditaan lääkärintodistus.
Poissaolo kokeesta vastaa hylättyä suoritusta.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Arviointimenetelmät ja arvioinnin perusteet
Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan välikokeilla, nettitehtävillä ja viikoittain tarkastettavilla harjoitustehtävillä,
Arvosteluun vaikuttavat nettitehtävät 15 %, kotitehtävät 10 % ja viikkokokeet/välikokeet 75 %. Kokeiden arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan, nettitehtävien ja kotitehtävien tekoa sekä kokeisiin osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunteja seurataan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois. Arvosanan 1 saa pistemäärällä, joka on 30 % kurssin eri arviointimuotojen yhteenlasketusta maksimipistemäärästä, kuitenkin siten, että 15 % on kokeesta.
Uusinta- ja korotus:
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä-, nettitehtävä- eikä aiemmat koepisteet.
Yksittäisiä välikokeita ei voi uusia eikä korottaa.
Arviointikriteeri - hylätty (0)
Opiskelija osallistuu säännöllisesti opetukseen ja sen työmuotoihin, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Mikäli edellä mainitut kriteerit eivät täyty, niin opiskelija poistetaan toteutukselta. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.
Arviointiasteikko
0-5
Opiskelumuodot ja opetusmenetelmät
Lähiopetus/etäopetus, itsenäinen opiskelu, videomateriaalit, tuntiharjoitukset ja kotitehtävät, nettitehtävät (STACK-tehtävät), kokeet.
Zoom-linkki löytyy kurssin Moodlesta.
Oppimateriaalit
Opettajan Moodlessa jakama materiaali (pdf-materiaalit, videot, interaktiiviset tehtävät)
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS/ TI-nspire CX II CAS -laskin.
Opiskelijan ajankäyttö ja kuormitus
Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
- opetuksesta, jossa opettaja mukana
- kotitehtävistä, nettitehtävistä ja mahdollisista ryhmätöistä (opettaja ei ole mukana),
- itsenäisestä työskentelystä
- kokeista
Opettajan pitämiä tunteja on n. 30 h.
Sisällön jaksotus
Sisällön jaksotus on suuntaa antava. Osa opsissa mainituista kokonaisuuksista on tarkoitus suorittaa itsenäisenä opiskeluna ja/tai ryhmätöinä.
-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät
Lisätietoja opiskelijoille
Opetus alkaa lukujärjestyksen mukaisesti viikolla 2.
Opintojaksoon tulee Moodle-toteutus. Toteutus ei näy automaattisesti, vaan se täytyy hakea kurssitunnuksella. Opettaja lähettää ilmoittautuneille ennen kurssin alkua Moodle-avaimen sähköpostilla. Etäopetuksen Zoom-linkki löytyy Moodlesta.
Toteutukset 5N00EG74-3102 (23I253) ja 5N00EG74-3103 (23I254) opetetaan yhdessä ja näillä on yhteinen Moodle, joka on nimetty 5N00EG74-3102/-3103 Differentiaalilaskenta (23I253, 23I254)
Ilmoittautumisaika
01.12.2023 - 22.01.2024
Ajoitus
01.01.2024 - 03.03.2024
Laajuus
3 op
Toteutustapa
Lähiopetus
Yksikkö
TAMK Matematiikka ja fysiikka
Toimipiste
TAMK Pääkampus
Opetuskielet
- Suomi
Koulutus
- Rakennustekniikan tutkinto-ohjelma
Opettaja
- Kirsi-Maria Rinneheimo
Vastuuhenkilö
Kirsi-Maria Rinneheimo
Ryhmät
-
23RTBRakennustekniikka
Tavoitteet (OJ)
Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa
Sisältö (OJ)
Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.
Esitietovaatimukset (OJ)
Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.
Arviointikriteerit, tyydyttävä (1-2) (OJ)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit, hyvä (3-4) (OJ)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit, kiitettävä (5) (OJ)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Aika ja paikka
Toteutus kestää 3. periodin ja opetus viikoittain:
ti 11-14 B2-35 (n. 40 mahtuu lähiopetukseen, loput voi osallistua zoomin välityksellä)
to 14-17 B2-35 (n. 40 mahtuu lähiopetukseen, loput voi osallistua zoomin välityksellä)
Tenttien ja uusintatenttien ajankohdat
Opintojakson välikokeet pidetään
1. välikoe ke 31.1. klo 9-11 (alustava aika, voi tulla muutoksia).
2. välikoe ke 21.2. klo 11-13 (alustava aika, voi tulla muutoksia).
Uusintaan osallistuminen edellyttää arvosanaa nolla.
1. uusintakoe ke 27.3.2024 klo 17-20 B4-kerros
2. uusintakoe/ korotus ke 17.4.2024 klo 17-20 B4-kerros
Hyväksyttyä arvosanaa voi korottaa 2. uusintakokeessa.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Uusintakokeeseen ja korotukseen ilmoittaudutaan TAMKin tenttijärjestelmän kautta.
Arviointimenetelmät ja arvioinnin perusteet
Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan kahdella välikokeella, nettitehtävillä ja viikoittain tarkastettavilla harjoitustehtävillä. Molempiin välikokeisiin pitää osallistua.
Arvosteluun vaikuttavat nettitehtävät 15 %, välikokeet 75 % ja kotitehtävät 10 %. Kokeiden arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan, nettitehtävien ja kotitehtävien tekoa sekä molempiin välikokeisiin osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois. Arvosanan 1 saa pistemäärällä, joka on 30 % kurssin eri arviointimuotojen yhteenlasketusta maksimipistemäärästä, kuitenkin siten, että vähintään 15 % pisteistä on kokeista.
Uusinta- ja korotus:
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä-, nettitehtävä- eikä välikoepisteet.
Arviointiasteikko
0-5
Opiskelumuodot ja opetusmenetelmät
Lähi- ja etäopetus yhdessä ryhmien 23RTB ja 23RTC kanssa. N. 40 mahtuu lähiopetukseen, loput voi osallistua opetukseen Zoomin välityksellä.
Itsenäinen opiskelu, tuntiharjoitukset ja kotitehtävät, videomateriaalit, nettitehtävät, 2 välikoetta koululla.
Oppimateriaalit
Opettajan Moodlessa jakama materiaali (opetusmonisteet, videot, STACK-tehtävät)
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS/ TI-nspire CX II CAS -laskin.
Opiskelijan ajankäyttö ja kuormitus
Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-opetuksesta, jossa opettaja mukana (lähi- tai Zoom-tunnit)
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, nettitehtävät, opetusvideot)
-kokeista
Opettajan pitämiä lähitunteja on n. 30 h
Sisällön jaksotus
-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät
Lisätietoja opiskelijoille
Opetus alkaa viikolla 2 lukujärjestyksen mukaisesti eli ti 9.1.2024
Opintojaksoon on Moodle-toteutus.
Ilmoittautumisaika
01.12.2023 - 22.01.2024
Ajoitus
01.01.2024 - 03.03.2024
Laajuus
3 op
Toteutustapa
Lähiopetus
Yksikkö
TAMK Matematiikka ja fysiikka
Toimipiste
TAMK Pääkampus
Opetuskielet
- Suomi
Koulutus
- Rakennustekniikan tutkinto-ohjelma
Opettaja
- Kirsi-Maria Rinneheimo
Vastuuhenkilö
Kirsi-Maria Rinneheimo
Ryhmät
-
23RTCRakennustekniikka
Tavoitteet (OJ)
Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa
Sisältö (OJ)
Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.
Esitietovaatimukset (OJ)
Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.
Arviointikriteerit, tyydyttävä (1-2) (OJ)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit, hyvä (3-4) (OJ)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit, kiitettävä (5) (OJ)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Arviointiasteikko
0-5
Ilmoittautumisaika
01.12.2023 - 04.01.2024
Ajoitus
01.01.2024 - 03.03.2024
Laajuus
3 op
Toteutustapa
Lähiopetus
Yksikkö
TAMK Matematiikka ja fysiikka
Toimipiste
TAMK Pääkampus
Opetuskielet
- Suomi
Koulutus
- Rakennustekniikan tutkinto-ohjelma
Opettaja
- Pia Ruokonen-Kaukolinna
Vastuuhenkilö
Pia Ruokonen-Kaukolinna
Ryhmät
-
23RTDRakennustekniikka
Tavoitteet (OJ)
Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa
Sisältö (OJ)
Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.
Esitietovaatimukset (OJ)
Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.
Arviointikriteerit, tyydyttävä (1-2) (OJ)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit, hyvä (3-4) (OJ)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit, kiitettävä (5) (OJ)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Tenttien ja uusintatenttien ajankohdat
Opintojakso suoritetaan viikottaisilla harjoitustehtävillä, nettitehtävillä ja kokeilla, joiden ajat varmistetaan vielä kurssin aikana. Huom! koeaika mahdollisesti muu kuin normaali tuntiaika
Alustavat ajat (näihin voi tulla muutoksia, joista tiedotetaan tunneilla ja sähköpostilla)
1. välikoe (aika ilmoitetaan kurssin aikana,)
2. välikoe 23.2.2024
Välikokeita ei voi uusia eikä korottaa.
Koko kurssin uusintakokeet järjestetään seuraavasti:
1. uusintakoe 27.3.2024 klo 17-20 (luokkatilat B4-27 ja B4-18)
2. uusintakoe/ korotus 17.4.2023 klo 17-20 (luokkatilat B4-27 ja B4-18)
Uusinnat ja korotukset ovat vain ja ainoastaan tässä ilmoitettuna aikana, ei siis myöhemmin esim. seuraavana vuonna.
Uusintakokeeseen ja korotukseen ilmoittaudutaan Pakin kautta.
Uusintaan osallistuminen edellyttää arvosanaa 0.
Yleiseti kokeesta:
Sairastapauksissa vaaditaan lääkärintodistus.
Poissaolo kokeesta vastaa hylättyä suoritusta.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Arviointimenetelmät ja arvioinnin perusteet
Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan välikokeilla, nettitehtävillä ja viikoittain tarkastettavilla harjoitustehtävillä,
Arvosteluun vaikuttavat nettitehtävät 15 %, kotitehtävät 10 % ja viikkokokeet/välikokeet 75 %. Kokeiden arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan, nettitehtävien ja kotitehtävien tekoa sekä kokeisiin osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunteja seurataan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois. Arvosanan 1 saa pistemäärällä, joka on 30 % kurssin eri arviointimuotojen yhteenlasketusta maksimipistemäärästä, kuitenkin siten, että 15 % on kokeesta.
Uusinta- ja korotus:
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä-, nettitehtävä- eikä aiemmat koepisteet.
Yksittäisiä välikokeita ei voi uusia eikä korottaa.
Arviointikriteeri - hylätty (0)
Opiskelija osallistuu säännöllisesti opetukseen ja sen työmuotoihin, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Mikäli edellä mainitut kriteerit eivät täyty, niin opiskelija poistetaan toteutukselta. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.
Arviointiasteikko
0-5
Opiskelumuodot ja opetusmenetelmät
Lähiopetus/etäopetus, itsenäinen opiskelu, videomateriaalit, tuntiharjoitukset ja kotitehtävät, nettitehtävät (STACK-tehtävät), kokeet.
Zoom-linkki löytyy kurssin Moodlesta.
Oppimateriaalit
Opettajan Moodlessa jakama materiaali (pdf-materiaalit, videot, interaktiiviset tehtävät)
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS/ TI-nspire CX II CAS -laskin.
Opiskelijan ajankäyttö ja kuormitus
Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
- opetuksesta, jossa opettaja mukana
- kotitehtävistä, nettitehtävistä ja mahdollisista ryhmätöistä (opettaja ei ole mukana),
- itsenäisestä työskentelystä
- kokeista
Opettajan pitämiä tunteja on n. 30 h.
Sisällön jaksotus
Sisällön jaksotus on suuntaa antava. Osa opsissa mainituista kokonaisuuksista on tarkoitus suorittaa itsenäisenä opiskeluna ja/tai ryhmätöinä.
-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät
Lisätietoja opiskelijoille
Opetus alkaa lukujärjestyksen mukaisesti viikolla 2.
Opintojaksoon tulee Moodle-toteutus. Toteutus ei näy automaattisesti, vaan se täytyy hakea kurssitunnuksella. Opettaja lähettää ilmoittautuneille ennen kurssin alkua Moodle-avaimen sähköpostilla. Etäopetuksen Zoom-linkki löytyy Moodlesta.
Toteutukset 5N00EG74-3101 (23RTA) ja 5N00EG74-3106 (23RTD) opetetaan yhdessä ja näillä on yhteinen Moodle, joka on nimetty 5N00EG74-3101/-3106 Differentiaalilaskenta (23RTA, 23RTD)
Ilmoittautumisaika
02.12.2023 - 12.01.2024
Ajoitus
01.01.2024 - 25.02.2024
Laajuus
3 op
Toteutustapa
Lähiopetus
Yksikkö
TAMK Matematiikka ja fysiikka
Toimipiste
TAMK Pääkampus
Opetuskielet
- Suomi
Koulutus
- Autotekniikan tutkinto-ohjelma
Opettaja
- Sara Nortunen
Vastuuhenkilö
Sara Nortunen
Ryhmät
-
23AUTOAAutotekniikka 2023
Tavoitteet (OJ)
Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa
Sisältö (OJ)
Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.
Esitietovaatimukset (OJ)
Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.
Arviointikriteerit, tyydyttävä (1-2) (OJ)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit, hyvä (3-4) (OJ)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit, kiitettävä (5) (OJ)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Tenttien ja uusintatenttien ajankohdat
Opintojakson koe pidetään 19.2.2023 tuntiaikaan (alustava aika, voi tulla muutoksia).
Uusintaan osallistuminen edellyttää arvosanaa nolla.
1. uusinta 27.3.2023 klo 17.00-20.00 luokassa x.
2. uusinta/korotus 17.4.2023 klo 17.00-20.00 luokassa x.
Hyväksyttyä arvosanaa voi korottaa 2. uusintakokeessa.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Uusintakokeeseen ja korotukseen ilmoittaudutaan TAMKin tenttijärjestelmän kautta.
Arviointimenetelmät ja arvioinnin perusteet
Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan kokeella ja viikoittain tarkastettavilla harjoitustehtävillä, joiden tekeminen vaikuttaa arvosanaan. Kotitehtäväpisteiden saamiseksi tehtävät on palautettava kirjallisesti (tarkemmat ohjeet Moodlessa). Opintojaksoon saattaa sisältyä myös ryhmässä tehtäviä osioita. Kokeen arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan, kotitehtävien aktiivista tekemistä (vähintään 30%) sekä kurssikokeeseen osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois.
Harjoitustehtävillä saa lisäpisteitä oheisen taulukon mukaan:
yli 30% : 1
yli 50%: 2
yli 70% : 3
yli 90% : 4
Harjoitustehtäväpisteet eivät vaikuta kurssin läpipääsyyn vaan niillä voi korottaa arvosanaa. Lopullinen arvosana määräytyy koepisteiden ja harjoitustehtäväpisteiden yhteismäärästä sekä osallistumisaktiivisuudesta. Harjoitustehtäväpisteitä ei huomioida enää uusinta- ja korotustenttien yhteydessä.
Arviointikriteeri -hylätty(0):
Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.
Arviointiasteikko
0-5
Opiskelumuodot ja opetusmenetelmät
lähiopetus
etäopetus
ryhmätyö
harjoitukset
kurssikoe
uusintatentti
Oppimateriaalit
Opettajan jakama materiaali
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS-laskin.
Opiskelijan ajankäyttö ja kuormitus
Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-lähi/etäopetuksesta, jossa opettajaja mukana
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, STACK-tehtävät, opetusvideot)
-kokeesta
Opettajan pitämiä oppitunteja on n. 27-30 h.
Sisällön jaksotus
-regressio
-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät
Lisätietoja opiskelijoille
Opetus alkaa 8.1. lukujärjestyksen mukaisesti.
Opintojaksoon on Moodle-toteutus. Oppitunnit pyritään pitämään lähiopetuksena etämahdollisuuden kanssa. Etäopetuksen Zoom-linkki on annettu Moodlessa. Tarvittaessa oppitunnit pidetään kokonaan etänä.
Ilmoittautumisaika
01.07.2023 - 29.10.2023
Ajoitus
23.10.2023 - 16.12.2023
Laajuus
3 op
Toteutustapa
Lähiopetus
Yksikkö
TAMK Matematiikka ja fysiikka
Toimipiste
TAMK Pääkampus
Opetuskielet
- Suomi
Koulutus
- Rakennustekniikan tutkinto-ohjelma
Opettaja
- Jukka Suominen
Vastuuhenkilö
Jukka Suominen
Ryhmät
-
23AI371Kiinteistönpitotekniikka ja korjausrakentaminen, monimuoto
Tavoitteet (OJ)
Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa
Sisältö (OJ)
Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.
Esitietovaatimukset (OJ)
Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.
Arviointikriteerit, tyydyttävä (1-2) (OJ)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit, hyvä (3-4) (OJ)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit, kiitettävä (5) (OJ)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Aika ja paikka
Ajankohdat ja paikat ilmoitettu TUNIMoodlessa.
Tenttien ja uusintatenttien ajankohdat
Opintojakson koe pidetään 16.12.2023 klo 12.15-15.00 juhlasalissa D1-04.
1. uusinta / korotus 01.02.2024 klo 11.00-13.00 (14.00) luokassa B2-37.
2. uusinta / korotus 07.03.2024 klo 07.30-10.00 luokassa B2-25.
Ilmoittautuminen uusintakokeisiin viimeistään koetta edeltävänä sunnuntaina sähköpostitse.
Hyväksyttyä arvosanaa voi yrittää korottaa vain kerran.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Arviointimenetelmät ja arvioinnin perusteet
Opintojakso arvioidaan asteikolla 0-5.
Kotitehtävistä on mahdollista saada 1 piste / palautuskerta, yhteensä 6 pistettä. Kokeen maksimipistemäärä 34 pistettä. Yhteispistemäärä on täten 40 pistettä.
Arvosana määräytyy kotitehtävien ja kokeen yhteispistemäärän perusteella seuraavasti:
0 pistettä, arvosana 0
10 pistettä, arvosana 1
16 pistettä, arvosana 2
22 pistettä, arvosana 3
28 pistettä, arvosana 4
34 pistettä, arvosana 5
Arviointiasteikko
0-5
Opiskelumuodot ja opetusmenetelmät
- lähiopetus (ja itseopiskelu)
- tuntitehtävät, kotitehtävät
- koe
Oppimateriaalit
Opettajan jakama materiaali Moodlessa
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS-laskin.
Opiskelijan ajankäyttö ja kuormitus
Opiskelijan keskimääräinen työmäärä on 81 h, joka koostuu:
-lähiopetuksesta
-itsenäisestä työskentelystä (mm. kotitehtävät, opetusvideot)
-kokeesta
Opettajan pitämiä lähitunteja koe mukaan lukien on 24 h.
Sisällön jaksotus
-erotusosamäärä ja derivaatta
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät
-regressio
Toteutuksen valinnaiset suoritustavat
-
Harjoittelu- ja työelämäyhteistyö
-
Kansainvälisyys
-
Lisätietoja opiskelijoille
Opetus alkaa 14.10.2023 lukujärjestyksen mukaisesti.
Arviointikriteerit - hylätty (0) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Katso kohta "Arviointimenetelmät ja arvioinnin perusteet".
Arviointikriteerit - tyydyttävä (1-2) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Katso kohta "Arviointimenetelmät ja arvioinnin perusteet".
Arviointikriteerit - hyvä (3-4) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Katso kohta "Arviointimenetelmät ja arvioinnin perusteet".
Arviointikriteerit - kiitettävä (5) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Katso kohta "Arviointimenetelmät ja arvioinnin perusteet".
Ilmoittautumisaika
02.07.2023 - 31.08.2023
Ajoitus
28.08.2023 - 15.10.2023
Laajuus
3 op
Toteutustapa
Lähiopetus
Yksikkö
Sähkö- ja automaatiotekniikka
Toimipiste
TAMK Pääkampus
Opetuskielet
- Suomi
Paikat
0 - 40
Koulutus
- Sähkö- ja automaatiotekniikan tutkinto-ohjelma
Opettaja
- Ulla Miekkala
Vastuuhenkilö
Ulla Miekkala
Ryhmät
-
23I231ASähkö- ja automaatiotekniikka
Tavoitteet (OJ)
Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa
Sisältö (OJ)
Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.
Esitietovaatimukset (OJ)
Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.
Arviointikriteerit, tyydyttävä (1-2) (OJ)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit, hyvä (3-4) (OJ)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit, kiitettävä (5) (OJ)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Aika ja paikka
Toteutus kestää 1. periodin ja opetus viikoittain:
ke 11-14 B4-27 (n. 40 mahtuu lähiopetukseen, loput voi osallistua zoomin välityksellä)
pe 11-14 B4-27 (n. 40 mahtuu lähiopetukseen, loput voi osallistua zoomin välityksellä)
Tenttien ja uusintatenttien ajankohdat
Opintojakson välikokeet pidetään
1. välikoe pe 22.9. klo 11-13 (alustava aika, voi tulla muutoksia).
2. välikoe pe 13.10. klo 11-13 (alustava aika, voi tulla muutoksia).
Uusintaan osallistuminen edellyttää arvosanaa nolla.
1. uusintakoe ke 22.11.2023 klo 16-19 B4-kerros
2. uusintakoe/ korotus ti 12.12.2023 klo 16-19 B4-kerros
Hyväksyttyä arvosanaa voi korottaa 2. uusintakokeessa.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Uusintakokeeseen ja korotukseen ilmoittaudutaan TAMKin tenttijärjestelmän kautta.
Arviointimenetelmät ja arvioinnin perusteet
Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan kahdella välikokeella, nettitehtävillä ja viikoittain tarkastettavilla harjoitustehtävillä.
Arvosteluun vaikuttavat nettitehtävät 15 %, välikokeet yhteensä 75 % ja kotitehtävät 10 %. Kokeiden arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä osallistumista koko opintojakson ajan, nettitehtävien ja kotitehtävien tekoa sekä kumpaankin välikokeeseen osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois. Arvosanan 1 saa pistemäärällä, joka on 30 % kurssin eri arviointimuotojen yhteenlasketusta maksimipistemäärästä.
Uusinta- ja korotus:
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä-, nettitehtävä- eikä välikoepisteet.
Arviointiasteikko
0-5
Opiskelumuodot ja opetusmenetelmät
Lähi- ja etäopetus yhdessä biotuotetekniikan ryhmän 23BIOTA kanssa. N. 40 mahtuu lähiopetukseen, loput voi osallistua opetukseen zoomin välityksellä.
Itsenäinen opiskelu, tuntiharjoitukset ja kotitehtävät, videomateriaalit, nettitehtävät, 2 välikoetta koululla.
Oppimateriaalit
Opettajan Moodlessa jakama materiaali (opetusmonisteet, videot, STACK-tehtävät)
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS/ TI-nspire CX II CAS -laskin.
Opiskelijan ajankäyttö ja kuormitus
Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-opetuksesta, jossa opettaja mukana (lähi- tai Zoom-tunnit)
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, nettitehtävät, opetusvideot)
-kokeista
Opettajan pitämiä lähitunteja on n. 30 h
Sisällön jaksotus
-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät
Lisätietoja opiskelijoille
Opetus alkaa viikolla 35 lukujärjestyksen mukaisesti eli ke 30.8.2023
Opintojaksoon on Moodle-toteutus.
Ilmoittautumisaika
07.06.2023 - 04.09.2023
Ajoitus
28.08.2023 - 15.10.2023
Laajuus
3 op
Toteutustapa
Lähiopetus
Yksikkö
TAMK Matematiikka ja fysiikka
Toimipiste
TAMK Pääkampus
Opetuskielet
- Suomi
Koulutus
- Biotuotetekniikan tutkinto-ohjelma
Opettaja
- Ulla Miekkala
Vastuuhenkilö
Ulla Miekkala
Ryhmät
-
23BIOTABiotuotetekniikan tutkinto-ohjelma, kevät 2023
Tavoitteet (OJ)
Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa
Sisältö (OJ)
Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.
Esitietovaatimukset (OJ)
Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.
Arviointikriteerit, tyydyttävä (1-2) (OJ)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit, hyvä (3-4) (OJ)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit, kiitettävä (5) (OJ)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Aika ja paikka
Toteutus kestää 1. periodin ja opetus viikoittain:
ke 11-14 B4-27 (n. 40 mahtuu lähiopetukseen, loput voi osallistua zoomin välityksellä)
pe 11-14 B4-27 (n. 40 mahtuu lähiopetukseen, loput voi osallistua zoomin välityksellä)
Tenttien ja uusintatenttien ajankohdat
Opintojakson välikokeet pidetään
1. välikoe pe 22.9. klo 11-13 (alustava aika, voi tulla muutoksia).
2. välikoe pe 13.10. klo 11-13 (alustava aika, voi tulla muutoksia).
Uusintaan osallistuminen edellyttää arvosanaa nolla.
1. uusintakoe ke 22.11.2023 klo 16-19 B4-kerros
2. uusintakoe/ korotus ti 12.12.2023 klo 16-19 B4-kerros
Hyväksyttyä arvosanaa voi korottaa 2. uusintakokeessa.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Uusintakokeeseen ja korotukseen ilmoittaudutaan TAMKin tenttijärjestelmän kautta.
Arviointimenetelmät ja arvioinnin perusteet
Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan kahdella välikokeella, nettitehtävillä ja viikoittain tarkastettavilla harjoitustehtävillä.
Arvosteluun vaikuttavat nettitehtävät 15 %, välikokeet yhteensä 75 % ja kotitehtävät 10 %. Kokeiden arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä osallistumista koko opintojakson ajan, nettitehtävien ja kotitehtävien tekoa sekä kumpaankin välikokeeseen osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois. Arvosanan 1 saa pistemäärällä, joka on 30 % kurssin eri arviointimuotojen yhteenlasketusta maksimipistemäärästä.
Uusinta- ja korotus:
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä-, nettitehtävä- eikä välikoepisteet.
Arviointiasteikko
0-5
Opiskelumuodot ja opetusmenetelmät
Lähi- ja etäopetus yhdessä sähkö- ja automaatiotekniikan ryhmän 23I231A kanssa. N. 40 mahtuu lähiopetukseen, loput voi osallistua opetukseen zoomin välityksellä.
Itsenäinen opiskelu, tuntiharjoitukset ja kotitehtävät, videomateriaalit, nettitehtävät, 2 välikoetta koululla.
Oppimateriaalit
Opettajan Moodlessa jakama materiaali (opetusmonisteet, videot, STACK-tehtävät)
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS/ TI-nspire CX II CAS -laskin.
Opiskelijan ajankäyttö ja kuormitus
Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-opetuksesta, jossa opettaja mukana (lähi- tai Zoom-tunnit)
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, nettitehtävät, opetusvideot)
-kokeista
Opettajan pitämiä lähitunteja on n. 30 h
Sisällön jaksotus
-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät
Lisätietoja opiskelijoille
Opetus alkaa viikolla 35 lukujärjestyksen mukaisesti eli ke 30.8.2023
Opintojaksoon on Moodle-toteutus.
Ilmoittautumisaika
01.08.2023 - 28.08.2023
Ajoitus
24.08.2023 - 14.10.2023
Laajuus
3 op
Toteutustapa
Lähiopetus
Yksikkö
TAMK Matematiikka ja fysiikka
Toimipiste
TAMK Pääkampus
Opetuskielet
- Suomi
Koulutus
- Talotekniikan tutkinto-ohjelma, LVI-talotekniikka
Opettaja
- Pia Ruokonen-Kaukolinna
Vastuuhenkilö
Pia Ruokonen-Kaukolinna
Ryhmät
-
23AI253LVI-talotekniikka, monimuotototeutus
-
23YIRAKERakentaminen, ylempi amk
Tavoitteet (OJ)
Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa
Sisältö (OJ)
Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.
Esitietovaatimukset (OJ)
Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.
Arviointikriteerit, tyydyttävä (1-2) (OJ)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit, hyvä (3-4) (OJ)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit, kiitettävä (5) (OJ)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Aika ja paikka
Aloitus torstaina 24.8. klo 17.15 Katso Zoom-linkki Moodlesta. Opettaja laittaa vielä ennen kurssin alkua sähköpostia ilmoittautuneille.
Itsenäinen opiskelu viikoittain annetusta aiheesta, opettaja tavattavissa kerran viikossa Zoomin kautta ja silloin voi kysyä viikon aiheesta ja viikkotehtävistä. Kurssin lopussa koe TAMKilla.
Tenttien ja uusintatenttien ajankohdat
Opintojakson koe pidetään 14.10.2023. klo 11-14 TAMKIlla tilassa D1-04 (juhlasali).
Koko kurssin uusintakoe järjestetään seuraavasti:
1. uusintakoe ke 22.11.2023 klo 17-20 (B4-27 tai B4-18))
2. uusintakoe/ korotus ti 12.12.2023 klo 17-20 (B4-18 tai B4-27)
Uusinta- ja korotus:
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä-, nettitehtävä- eikä aiemmat koepisteet.
Uusintakokeisiin ilmoittaudutaan Pakin kautta.
Arviointimenetelmät ja arvioinnin perusteet
Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan viikottaisia harjoitustehtäviä (harjoitusmonisteen tehtävät + STACK-tehtävät) tekemällä ja loppukokeella. Viikoittaisilla harjoitustehtävillä voi koota 1/3 kokonaispisteistä ja loput loppukokeessa. Hyväksyttyyn suoritukseen riittää 1/3 kokonaispisteistä. Kokeiden arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys.
Kurssiarvioinnissa käytetään jatkuvaa arviointia, jossa osa kurssipisteistä kerätään kurssin suorituksen aikana ja loput kokeella. Tästä syystä kurssilla edetään tietyssä viikkorytmissä ja tehtäviä palautetaan tietyllä viikolla. Tehtäviä ei voi palauttaa enää jälkikäteen.
Arviointiasteikko
0-5
Opiskelumuodot ja opetusmenetelmät
Verkkokurssi: Itsenäinen opiskelu, videomateriaalit, itsenäisesti tehtävät harjoitukset (palautettavat viikkotehtävät + automaattisesti arvioitavat STACK-tehtävät), viikoittain opettajan kontaktitunti etänä, koe TAMKilla. Ajat ilmoitettu Moodlessa.
Yleisperiaate kurssilla on se, että viikoittain avautuu itseopiskeltava aihe ja siihen kotitehtävät, joita on kahdenlaisia (perinteiset paperille tehtävät harjoitukset ja Stack-tehtävät). Käytössä on runsaasti videomateriaalia. Kerran viikossa on aina vapaaehtoinen viikkotapaaminen zoomin kautta ja siellä käydään tarvittaessa kotitehtäviä läpi sekä voi muutoinkin kysellä epäselvistä asioista.
Oppimateriaalit
Opintojakson oppimateriaalina on sähköistä oppimateriaalia, opetusvideoita ja STACK-tehtäviä, jotka opiskelija löytää kurssin Moodle-alustalta
Kaavasto: Tammertekniikan Tekniikan kaavasto tai MAOL
Laskinsuositus: TI-nspire CX CAS/ TI-nspire CX II CAS -laskin.
Opiskelijan ajankäyttö ja kuormitus
Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
- itsenäisestä työskentelystä (mm. teorian ja harjoitusten opiskelu oppimateriaalin ja opetusvideoiden avulla, viikkotehtävät, nettitehtävät)
- viikoittaisista tapaamisista, jossa opettajalta voi Zoomin kautta kysyä viikon aiheesta (ei pakollinen) .
- kokeesta
Sisällön jaksotus
-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät
Toteutuksen valinnaiset suoritustavat
AHOT-menettely, jossa opiskelija osoittaa osaamisensa yhdellä kokeella. AHOToinnista tulee ilmoittaa opettajlle viimeistään viikon kuluttua opintojakson aloituksesta, jolloin sovitaan yhdessä koeaika.
Lisätietoja opiskelijoille
Kurssi alkaa torstaina 24.8.2023. Tällöin pidetään kurssin aloitusinfo, joka myös nauhoitetaan. Osallistuminen siihen ei ole pakollista.
Opintojaksoon on Moodle-toteutus, joka ei näy automaattiseti. Tarvittavat tiedot ja linkit lähetetään sähköpostiin viimeistään 2 päivää ennen kurssin alkua.
Kurssi on yhteinen toteutuksille 5N00EG74-3084 ja 5N00EG74-3086.
Ilmoittautumisaika
02.07.2023 - 18.08.2023
Ajoitus
24.08.2023 - 14.10.2023
Laajuus
3 op
Toteutustapa
Lähiopetus
Yksikkö
TAMK Matematiikka ja fysiikka
Toimipiste
TAMK Pääkampus
Opetuskielet
- Suomi
Koulutus
- Konetekniikan tutkinto-ohjelma
Opettaja
- Pia Ruokonen-Kaukolinna
Vastuuhenkilö
Pia Ruokonen-Kaukolinna
Ryhmät
-
23AI112Konetekniikka 2023, monimuoto
Tavoitteet (OJ)
Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa
Sisältö (OJ)
Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.
Esitietovaatimukset (OJ)
Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.
Arviointikriteerit, tyydyttävä (1-2) (OJ)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit, hyvä (3-4) (OJ)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit, kiitettävä (5) (OJ)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Aika ja paikka
Aloitus torstaina 24.8. klo 17.15 Katso Zoom-linkki Moodlesta. Opettaja laittaa vielä ennen kurssin alkua sähköpostia ilmoittautuneille.
Itsenäinen opiskelu viikoittain annetusta aiheesta, opettaja tavattavissa kerran viikossa Zoomin kautta ja silloin voi kysyä viikon aiheesta ja viikkotehtävistä. Kurssin lopussa koe TAMKilla.
Tenttien ja uusintatenttien ajankohdat
Opintojakson koe pidetään 14.10.2023. klo 11-14 TAMKIlla tilassa D1-04 (juhlasali).
Koko kurssin uusintakoe järjestetään seuraavasti:
1. uusintakoe ke 22.11.2023 klo 17-20 (B4-27 tai B4-18))
2. uusintakoe/ korotus ti 12.12.2023 klo 17-20 (B4-18 tai B4-27)
Uusinta- ja korotus:
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä-, nettitehtävä- eikä aiemmat koepisteet.
Uusintakokeisiin ilmoittaudutaan Pakin kautta.
Arviointimenetelmät ja arvioinnin perusteet
Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan viikottaisia harjoitustehtäviä (harjoitusmonisteen tehtävät + STACK-tehtävät) tekemällä ja loppukokeella. Viikoittaisilla harjoitustehtävillä voi koota 1/3 kokonaispisteistä ja loput loppukokeessa. Hyväksyttyyn suoritukseen riittää 1/3 kokonaispisteistä. Kokeiden arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys.
Kurssiarvioinnissa käytetään jatkuvaa arviointia, jossa osa kurssipisteistä kerätään kurssin suorituksen aikana ja loput kokeella. Tästä syystä kurssilla edetään tietyssä viikkorytmissä ja tehtäviä palautetaan tietyllä viikolla. Tehtäviä ei voi palauttaa enää jälkikäteen.
Arviointiasteikko
0-5
Opiskelumuodot ja opetusmenetelmät
Verkkokurssi: Itsenäinen opiskelu, videomateriaalit, itsenäisesti tehtävät harjoitukset (palautettavat viikkotehtävät + automaattisesti arvioitavat STACK-tehtävät), viikoittain opettajan kontaktitunti etänä, koe TAMKilla. Ajat ilmoitettu Moodlessa.
Yleisperiaate kurssilla on se, että viikoittain avautuu itseopiskeltava aihe ja siihen kotitehtävät, joita on kahdenlaisia (perinteiset paperille tehtävät harjoitukset ja Stack-tehtävät). Käytössä on runsaasti videomateriaalia. Kerran viikossa on aina vapaaehtoinen viikkotapaaminen zoomin kautta ja siellä käydään tarvittaessa kotitehtäviä läpi sekä voi muutoinkin kysellä epäselvistä asioista.
Oppimateriaalit
Opintojakson oppimateriaalina on sähköistä oppimateriaalia, opetusvideoita ja STACK-tehtäviä, jotka opiskelija löytää kurssin Moodle-alustalta
Kaavasto: Tammertekniikan Tekniikan kaavasto tai MAOL
Laskinsuositus: TI-nspire CX CAS/ TI-nspire CX II CAS -laskin.
Opiskelijan ajankäyttö ja kuormitus
Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
- itsenäisestä työskentelystä (mm. teorian ja harjoitusten opiskelu oppimateriaalin ja opetusvideoiden avulla, viikkotehtävät, nettitehtävät)
- viikoittaisista tapaamisista, jossa opettajalta voi Zoomin kautta kysyä viikon aiheesta (ei pakollinen) .
- kokeesta
Sisällön jaksotus
-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät
Toteutuksen valinnaiset suoritustavat
AHOT-menettely, jossa opiskelija osoittaa osaamisensa yhdellä kokeella. AHOToinnista tulee ilmoittaa opettajlle viimeistään viikon kuluttua opintojakson aloituksesta, jolloin sovitaan yhdessä koeaika.
Lisätietoja opiskelijoille
Kurssi alkaa torstaina 24.8.2023. Tällöin pidetään kurssin aloitusinfo, joka myös nauhoitetaan. Osallistuminen siihen ei ole pakollista.
Opintojaksoon on Moodle-toteutus, joka ei näy automaattiseti. Tarvittavat tiedot ja linkit lähetetään sähköpostiin viimeistään 2 päivää ennen kurssin alkua.
Kurssi on yhteinen toteutuksille 5N00EG74-3084 ja 5N00EG74-3086.
Ilmoittautumisaika
02.12.2022 - 13.01.2023
Ajoitus
13.01.2023 - 10.03.2023
Laajuus
3 op
Toteutustapa
Lähiopetus
Yksikkö
Sähkö- ja automaatiotekniikka
Toimipiste
TAMK Pääkampus
Opetuskielet
- Suomi
Paikat
0 - 40
Koulutus
- Sähkö- ja automaatiotekniikan tutkinto-ohjelma
Opettaja
- Jukka Suominen
Vastuuhenkilö
Jukka Suominen
Ryhmät
-
22AI231Sähkö- ja automaatiotekniikka, aikuiset
Tavoitteet (OJ)
Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa
Sisältö (OJ)
Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.
Esitietovaatimukset (OJ)
Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.
Arviointikriteerit, tyydyttävä (1-2) (OJ)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit, hyvä (3-4) (OJ)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit, kiitettävä (5) (OJ)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Aika ja paikka
Ajankohdat ja paikat ilmoitettu TUNIMoodlessa.
Tenttien ja uusintatenttien ajankohdat
Opintojakson koe pidetään 10.03.2023 klo 11.15-14.00 luokassa B2-25
1. uusinta / korotus 31.03.2023 klo 17.00-20.00 luokassa B2-25
2. uusinta / korotus 21.04.2023 klo 17.00-20.00 luokassa B2-25
Ilmoittautuminen uusintakokeisiin viimeistään koetta edeltävänä sunnuntaina sähköpostitse.
Hyväksyttyä arvosanaa voi yrittää korottaa vain kerran.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Arviointimenetelmät ja arvioinnin perusteet
Opintojakso arvioidaan asteikolla 0-5.
Kotitehtävistä on mahdollista saada 1 piste / palautuskerta, yhteensä 6 pistettä. Kokeen maksimipistemäärä 34 pistettä. Yhteispistemäärä on täten 40 pistettä.
Arvosana määräytyy kotitehtävien ja kokeen yhteispistemäärän perusteella seuraavasti:
0 pistettä, arvosana 0
10 pistettä, arvosana 1
16 pistettä, arvosana 2
22 pistettä, arvosana 3
28 pistettä, arvosana 4
34 pistettä, arvosana 5
Arviointiasteikko
0-5
Opiskelumuodot ja opetusmenetelmät
- lähiopetus (ja itseopiskelu)
- tuntitehtävät, kotitehtävät
- koe
Oppimateriaalit
Opettajan jakama materiaali Moodlessa
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS-laskin.
Opiskelijan ajankäyttö ja kuormitus
Opiskelijan keskimääräinen työmäärä on 81 h, joka koostuu:
-lähiopetuksesta
-itsenäisestä työskentelystä (mm. kotitehtävät, opetusvideot)
-kokeesta
Opettajan pitämiä lähitunteja koe mukaan lukien on 21 h.
Sisällön jaksotus
-erotusosamäärä ja derivaatta
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät
-regressio
Toteutuksen valinnaiset suoritustavat
-
Harjoittelu- ja työelämäyhteistyö
-
Kansainvälisyys
-
Lisätietoja opiskelijoille
Opetus alkaa 13.01.2023 lukujärjestyksen mukaisesti.
Arviointikriteerit - hylätty (0) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Katso kohta "Arviointimenetelmät ja arvioinnin perusteet".
Arviointikriteerit - tyydyttävä (1-2) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Katso kohta "Arviointimenetelmät ja arvioinnin perusteet".
Arviointikriteerit - hyvä (3-4) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Katso kohta "Arviointimenetelmät ja arvioinnin perusteet".
Arviointikriteerit - kiitettävä (5) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Katso kohta "Arviointimenetelmät ja arvioinnin perusteet".
Ilmoittautumisaika
02.12.2022 - 03.01.2023
Ajoitus
09.01.2023 - 24.02.2023
Laajuus
3 op
Toteutustapa
Lähiopetus
Yksikkö
TAMK Matematiikka ja fysiikka
Toimipiste
TAMK Pääkampus
Opetuskielet
- Suomi
Koulutus
- Rakennustekniikan tutkinto-ohjelma
Opettaja
- Pia Ruokonen-Kaukolinna
Vastuuhenkilö
Pia Ruokonen-Kaukolinna
Ryhmät
-
22RTARakennustekniikka
Tavoitteet (OJ)
Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa
Sisältö (OJ)
Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.
Esitietovaatimukset (OJ)
Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.
Arviointikriteerit, tyydyttävä (1-2) (OJ)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit, hyvä (3-4) (OJ)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit, kiitettävä (5) (OJ)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Tenttien ja uusintatenttien ajankohdat
Opintojakso suoritetaan viikottaisilla harjoitustehtävillä, nettitehtävillä ja kokeella.
Koe 24.2.2023 (Alustava aika, johon voi tulla muutoksia, joista tiedotetaan tunneilla ja sähköpostilla)
Koko kurssin uusintakoe järjestetään seuraavasti:
1. uusintakoe 29.3.2023 klo 17-20
2. uusintakoe/ korotus 12.4.2023 klo 17-20
Uusinnat ja korotukset ovat vain ja ainoastaan tässä ilmoitettuna aikana, ei siis myöhemmin esim. seuraavana vuonna.
Uusintakokeeseen ja korotukseen ilmoittaudutaan Pakin kautta..
Uusintaan osallistuminen edellyttää arvosanaa 0.
Yleiseti kokeesta:
Sairastapauksissa vaaditaan lääkärintodistus.
Poissaolo kokeesta vastaa hylättyä suoritusta.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Arviointimenetelmät ja arvioinnin perusteet
Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan kokeella/kokeilla, nettitehtävillä ja viikoittain tarkastettavilla harjoitustehtävillä,
Arvosteluun vaikuttavat nettitehtävät 15 %, kotitehtävät 10 % ja koe 75 %. Kokeen arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä osallistumista kurssin eri työmuotoihin koko opintojakson ajan (opetus, kotitehtävät, nettitehtävät ja koe) . Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois. Arvosanan 1 saa pistemäärällä, joka on 30 % kurssin eri arviointimuotojen yhteenlasketusta maksimipistemäärästä.
Uusinta- ja korotus:
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä-, nettitehtävä- eikä aiemmat koepisteet.
Arviointikriteeri - hylätty (0)
Opiskelija osallistuu säännöllisesti opetukseen ja sen työmuotoihin, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Mikäli edellä mainitut kriteerit eivät täyty, niin opiskelija poistetaan toteutukselta. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.
Arviointiasteikko
0-5
Opiskelumuodot ja opetusmenetelmät
Etäopetus zoomin kautta, itsenäinen opiskelu, videomateriaalit, tuntiharjoitukset ja kotitehtävät, nettitehtävät (STACK-tehtävät), tentti
Zoom-linkki löytyy kurssin Moodlesta.
Oppimateriaalit
Opettajan Moodlessa jakama materiaali (pdf-materiaalit, videot, interaktiiviset tehtävät)
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS/ TI-nspire CX II CAS -laskin.
Opiskelijan ajankäyttö ja kuormitus
Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
- etäopetuksesta, jossa opettajaja mukana
- mahdollisista ryhmätöistä (opettaja ei ole mukana)
- itsenäisestä työskentelystä (mm. kotitehtävät, nettitehtävät, opetusvideot)
- kokeista
Opettajan pitämiä lähitunteja on n. 30 h
Sisällön jaksotus
Sisällön jaksotus on suuntaa antava. Osa opsissa mainituista kokonaisuuksista on tarkoitus suorittaa itsenäisenä opiskeluna ja/tai ryhmätöinä.
-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät
Lisätietoja opiskelijoille
Opetus alkaa lukujärjestyksen mukaisesti viikolla 2.
Opintojaksoon tulee Moodle-toteutus. Toteutus ei näy automaattisesti, vaan se täytyy hakea kurssitunnuksella. Opettaja lähettää ilmoittautuneille ennen kurssin alkua Moodle-avaimen sähköpostilla. Etäopetuksen Zoom-linkki löytyy Moodlesta.
Toteutukset 5N00EG74-3054 (22RTA) ja 5N00EG74-3085 (22RTD) opetetaan yhdessä ja näillä on yhteinen Moodle, joka on nimetty toteutuksen 5N00EG74-3054 mukaan.
Arviointikriteerit - hylätty (0) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.
Arviointikriteerit - tyydyttävä (1-2) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti, numeerisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia.Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä on vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit - hyvä (3-4) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit - kiitettävä (5) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut sekä käyttää oikeita matemaattisia merkintöjä. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Ilmoittautumisaika
02.12.2022 - 10.01.2023
Ajoitus
09.01.2023 - 05.03.2023
Laajuus
3 op
Toteutustapa
Lähiopetus
Yksikkö
Sähkö- ja automaatiotekniikka
Toimipiste
TAMK Pääkampus
Opetuskielet
- Suomi
Paikat
0 - 40
Koulutus
- Sähkö- ja automaatiotekniikan tutkinto-ohjelma
Opettaja
- Ulla Miekkala
Vastuuhenkilö
Ulla Miekkala
Ryhmät
-
22I231BSähkö- ja automaatiotekniikka
Tavoitteet (OJ)
Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa
Sisältö (OJ)
Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.
Esitietovaatimukset (OJ)
Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.
Arviointikriteerit, tyydyttävä (1-2) (OJ)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit, hyvä (3-4) (OJ)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit, kiitettävä (5) (OJ)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Aika ja paikka
ti 11-14 B4-27 (n. puolet mahtuu lähiopetukseen, toinen puoli voi osallistua zoomin välityksellä)
to 8-11 B4-27 (n. puolet mahtuu lähiopetukseen, toinen puoli voi osallistua zoomin välityksellä)
Tenttien ja uusintatenttien ajankohdat
Opintojakson välikokeet pidetään
1. välikoe ti 7.2. klo 11-13 juhlasali (D1-04) (alustava aika, voi tulla muutoksia).
2. välikoe to 23.2. klo 9-11 juhlasali (D1-04) (alustava aika, voi tulla muutoksia).
Uusintaan osallistuminen edellyttää arvosanaa nolla.
1. uusintakoe 29.3.2023 klo 17.00-20.00 (paikka ilmoitetaan ennen tenttiä)
2. uusintakoe/ korotus 12.4.2023 klo 17.00-20.00 (paikka ilmoitetaan ennen tenttiä)
Hyväksyttyä arvosanaa voi korottaa 2. uusintakokeessa.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Uusintakokeeseen ja korotukseen ilmoittaudutaan TAMKin tenttijärjestelmän kautta.
Arviointimenetelmät ja arvioinnin perusteet
Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan välikokeilla (2 kpl), nettitehtävillä ja viikoittain tarkastettavilla harjoitustehtävillä,
Arvostelun vaikuttavat nettitehtävät 15 %, välikokeet yhteensä 75 % ja kotitehtävät 10 %. Kokeiden arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä osallistumista koko opintojakson ajan, nettitehtävien ja kotitehtävien tekoa sekä välikokeisiin osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois. Arvosanan 1 saa pistemäärällä, joka on 30 % kurssin eri arviointimuotojen yhteenlasketusta maksimipistemäärästä.
Uusinta- ja korotus:
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä-, nettitehtävä- eikä välikoepisteet.
Arviointiasteikko
0-5
Opiskelumuodot ja opetusmenetelmät
Lähi- ja etäopetus yhdessä konetekniikan ryhmän 22I112B kanssa. N. puolet mahtuu lähiopetukseen, toinen puoli voi osallistua opetukseen zoomin välityksellä.
Itsenäinen opiskelu, tuntiharjoitukset ja kotitehtävät, videomateriaalit, nettitehtävät, 2 välikoetta koululla.
Oppimateriaalit
Opettajan Moodlessa jakama materiaali (opetusmonisteet, videot, STACK-tehtävät)
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS/ TI-nspire CX II CAS -laskin.
Opiskelijan ajankäyttö ja kuormitus
Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-opetuksesta, jossa opettaja mukana (lähi- tai Zoom-tunnit)
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, nettitehtävät, opetusvideot)
-kokeista
Opettajan pitämiä lähitunteja on n. 30 h
Sisällön jaksotus
-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät
Lisätietoja opiskelijoille
Opetus alkaa viikolla 2 lukujärjestyksen mukaisesti eli ti 10.1.2023
Opintojaksoon on Moodle-toteutus.
Ilmoittautumisaika
02.12.2022 - 11.01.2023
Ajoitus
09.01.2023 - 05.03.2023
Laajuus
3 op
Toteutustapa
Lähiopetus
Yksikkö
TAMK Matematiikka ja fysiikka
Toimipiste
TAMK Pääkampus
Opetuskielet
- Suomi
Koulutus
- Konetekniikan tutkinto-ohjelma
Opettaja
- Ulla Miekkala
Vastuuhenkilö
Ulla Miekkala
Ryhmät
-
22I112AKonetekniikka 2022
Tavoitteet (OJ)
Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa
Sisältö (OJ)
Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.
Esitietovaatimukset (OJ)
Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.
Arviointikriteerit, tyydyttävä (1-2) (OJ)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit, hyvä (3-4) (OJ)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit, kiitettävä (5) (OJ)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Aika ja paikka
ke 8-11 B4-27 (n. puolet mahtuu lähiopetukseen, toinen puoli voi osallistua zoomin välityksellä)
pe 11-14 B4-18 (n. puolet mahtuu lähiopetukseen, toinen puoli voi osallistua zoomin välityksellä)
(perjantain tunnit kahdella ensimmäisellä opetusviikolla klo 13-16)
Tenttien ja uusintatenttien ajankohdat
Opintojakson välikokeet pidetään
1. välikoe pe 3.2. klo 11-13 juhlasali (D1-04) (alustava aika, voi tulla muutoksia).
2. välikoe pe 24.2. klo 11-13 juhlasali (D1-04) (alustava aika, voi tulla muutoksia).
Uusintaan osallistuminen edellyttää arvosanaa nolla.
1. uusintakoe 29.3.2023 klo 17.00-20.00 (paikka ilmoitetaan ennen tenttiä)
2. uusintakoe/ korotus 12.4.2023 klo 17.00-20.00 (paikka ilmoitetaan ennen tenttiä)
Hyväksyttyä arvosanaa voi korottaa 2. uusintakokeessa.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Uusintakokeeseen ja korotukseen ilmoittaudutaan TAMKin tenttijärjestelmän kautta.
Arviointimenetelmät ja arvioinnin perusteet
Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan välikokeilla (2 kpl), nettitehtävillä ja viikoittain tarkastettavilla harjoitustehtävillä,
Arvostelun vaikuttavat nettitehtävät 15 %, välikokeet yhteensä 75 % ja kotitehtävät 10 %. Kokeiden arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä osallistumista koko opintojakson ajan, nettitehtävien ja kotitehtävien tekoa sekä välikokeisiin osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois. Arvosanan 1 saa pistemäärällä, joka on 30 % kurssin eri arviointimuotojen yhteenlasketusta maksimipistemäärästä.
Uusinta- ja korotus:
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä-, nettitehtävä- eikä välikoepisteet.
Arviointiasteikko
0-5
Opiskelumuodot ja opetusmenetelmät
Lähi- ja etäopetus yhdessä konetekniikan ryhmän 22I112C kanssa. N. puolet mahtuu lähiopetukseen, toinen puoli voi osallistua opetukseen zoomin välityksellä.
Itsenäinen opiskelu, tuntiharjoitukset ja kotitehtävät, videomateriaalit, nettitehtävät, 2 välikoetta koululla.
Oppimateriaalit
Opettajan Moodlessa jakama materiaali (opetusmonisteet, videot, STACK-tehtävät)
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS/ TI-nspire CX II CAS -laskin.
Opiskelijan ajankäyttö ja kuormitus
Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-opetuksesta, jossa opettaja mukana (lähi- tai Zoom-tunnit)
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, nettitehtävät, opetusvideot)
-kokeista
Opettajan pitämiä lähitunteja on n. 30 h
Sisällön jaksotus
-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät
Lisätietoja opiskelijoille
Opetus alkaa viikolla 2 lukujärjestyksen mukaisesti eli ke 11.1.2023
Opintojaksoon on Moodle-toteutus.
Ilmoittautumisaika
02.12.2022 - 11.01.2023
Ajoitus
09.01.2023 - 05.03.2023
Laajuus
3 op
Toteutustapa
Lähiopetus
Yksikkö
TAMK Matematiikka ja fysiikka
Toimipiste
TAMK Pääkampus
Opetuskielet
- Suomi
Koulutus
- Konetekniikan tutkinto-ohjelma
Opettaja
- Ulla Miekkala
Vastuuhenkilö
Ulla Miekkala
Ryhmät
-
22I112BKonetekniikka 2022
Tavoitteet (OJ)
Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa
Sisältö (OJ)
Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.
Esitietovaatimukset (OJ)
Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.
Arviointikriteerit, tyydyttävä (1-2) (OJ)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit, hyvä (3-4) (OJ)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit, kiitettävä (5) (OJ)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Aika ja paikka
ti 11-14 B4-27 (n. puolet mahtuu lähiopetukseen, toinen puoli voi osallistua zoomin välityksellä)
to 8-11 B4-27 (n. puolet mahtuu lähiopetukseen, toinen puoli voi osallistua zoomin välityksellä)
Tenttien ja uusintatenttien ajankohdat
Opintojakson välikokeet pidetään
1. välikoe ti 7.2. klo 11-13 juhlasali (D1-04) (alustava aika, voi tulla muutoksia).
2. välikoe to 23.2. klo 9-11 juhlasali (D1-04) (alustava aika, voi tulla muutoksia).
Uusintaan osallistuminen edellyttää arvosanaa nolla.
1. uusintakoe 29.3.2023 klo 17.00-20.00 (paikka ilmoitetaan ennen tenttiä)
2. uusintakoe/ korotus 12.4.2023 klo 17.00-20.00 (paikka ilmoitetaan ennen tenttiä)
Hyväksyttyä arvosanaa voi korottaa 2. uusintakokeessa.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Uusintakokeeseen ja korotukseen ilmoittaudutaan TAMKin tenttijärjestelmän kautta.
Arviointimenetelmät ja arvioinnin perusteet
Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan välikokeilla (2 kpl), nettitehtävillä ja viikoittain tarkastettavilla harjoitustehtävillä,
Arvostelun vaikuttavat nettitehtävät 15 %, välikokeet yhteensä 75 % ja kotitehtävät 10 %. Kokeiden arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä osallistumista koko opintojakson ajan, nettitehtävien ja kotitehtävien tekoa sekä välikokeisiin osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois. Arvosanan 1 saa pistemäärällä, joka on 30 % kurssin eri arviointimuotojen yhteenlasketusta maksimipistemäärästä.
Uusinta- ja korotus:
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä-, nettitehtävä- eikä välikoepisteet.
Arviointiasteikko
0-5
Opiskelumuodot ja opetusmenetelmät
Lähi- ja etäopetus yhdessä sähkö- ja automaatiotekniikan ryhmän 22I231B kanssa. N. puolet mahtuu lähiopetukseen, toinen puoli voi osallistua opetukseen zoomin välityksellä.
Itsenäinen opiskelu, tuntiharjoitukset ja kotitehtävät, videomateriaalit, nettitehtävät, 2 välikoetta koululla.
Oppimateriaalit
Opettajan Moodlessa jakama materiaali (opetusmonisteet, videot, STACK-tehtävät)
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS/ TI-nspire CX II CAS -laskin.
Opiskelijan ajankäyttö ja kuormitus
Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-opetuksesta, jossa opettaja mukana (lähi- tai Zoom-tunnit)
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, nettitehtävät, opetusvideot)
-kokeista
Opettajan pitämiä lähitunteja on n. 30 h
Sisällön jaksotus
-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät
Lisätietoja opiskelijoille
Opetus alkaa viikolla 2 lukujärjestyksen mukaisesti eli ti 10.1.2023
Opintojaksoon on Moodle-toteutus.
Ilmoittautumisaika
02.12.2022 - 11.01.2023
Ajoitus
09.01.2023 - 05.03.2023
Laajuus
3 op
Toteutustapa
Lähiopetus
Yksikkö
TAMK Matematiikka ja fysiikka
Toimipiste
TAMK Pääkampus
Opetuskielet
- Suomi
Koulutus
- Konetekniikan tutkinto-ohjelma
Opettaja
- Ulla Miekkala
Vastuuhenkilö
Ulla Miekkala
Ryhmät
-
22I112CKonetekniikka 2022
Tavoitteet (OJ)
Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa
Sisältö (OJ)
Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.
Esitietovaatimukset (OJ)
Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.
Arviointikriteerit, tyydyttävä (1-2) (OJ)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit, hyvä (3-4) (OJ)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit, kiitettävä (5) (OJ)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Aika ja paikka
ke 8-11 B4-27 (n. puolet mahtuu lähiopetukseen, toinen puoli voi osallistua zoomin välityksellä)
pe 11-14 B4-18 (n. puolet mahtuu lähiopetukseen, toinen puoli voi osallistua zoomin välityksellä)
(perjantain tunnit kahdella ensimmäisellä opetusviikolla klo 13-16)
Tenttien ja uusintatenttien ajankohdat
Opintojakson välikokeet pidetään
1. välikoe pe 3.2. klo 11-13 juhlasali (D1-04) (alustava aika, voi tulla muutoksia).
2. välikoe pe 24.2. klo 11-13 juhlasali (D1-04) (alustava aika, voi tulla muutoksia).
Uusintaan osallistuminen edellyttää arvosanaa nolla.
1. uusintakoe 29.3.2023 klo 17.00-20.00 (paikka ilmoitetaan ennen tenttiä)
2. uusintakoe/ korotus 12.4.2023 klo 17.00-20.00 (paikka ilmoitetaan ennen tenttiä)
Hyväksyttyä arvosanaa voi korottaa 2. uusintakokeessa.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Uusintakokeeseen ja korotukseen ilmoittaudutaan TAMKin tenttijärjestelmän kautta.
Arviointimenetelmät ja arvioinnin perusteet
Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan välikokeilla (2 kpl), nettitehtävillä ja viikoittain tarkastettavilla harjoitustehtävillä,
Arvostelun vaikuttavat nettitehtävät 15 %, välikokeet yhteensä 75 % ja kotitehtävät 10 %. Kokeiden arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä osallistumista koko opintojakson ajan, nettitehtävien ja kotitehtävien tekoa sekä välikokeisiin osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois. Arvosanan 1 saa pistemäärällä, joka on 30 % kurssin eri arviointimuotojen yhteenlasketusta maksimipistemäärästä.
Uusinta- ja korotus:
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä-, nettitehtävä- eikä välikoepisteet.
Arviointiasteikko
0-5
Opiskelumuodot ja opetusmenetelmät
Lähi- ja etäopetus yhdessä konetekniikan ryhmän 22I112A kanssa. N. puolet mahtuu lähiopetukseen, toinen puoli voi osallistua opetukseen zoomin välityksellä.
Itsenäinen opiskelu, tuntiharjoitukset ja kotitehtävät, videomateriaalit, nettitehtävät, 2 välikoetta koululla.
Oppimateriaalit
Opettajan Moodlessa jakama materiaali (opetusmonisteet, videot, STACK-tehtävät)
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS/ TI-nspire CX II CAS -laskin.
Opiskelijan ajankäyttö ja kuormitus
Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-opetuksesta, jossa opettaja mukana (lähi- tai Zoom-tunnit)
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, nettitehtävät, opetusvideot)
-kokeista
Opettajan pitämiä lähitunteja on n. 30 h
Sisällön jaksotus
-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät
Lisätietoja opiskelijoille
Opetus alkaa viikolla 2 lukujärjestyksen mukaisesti eli ke 11.1.2023
Opintojaksoon on Moodle-toteutus.
Ilmoittautumisaika
02.12.2022 - 15.02.2023
Ajoitus
01.01.2023 - 06.03.2023
Laajuus
3 op
Toteutustapa
Lähiopetus
Yksikkö
TAMK Matematiikka ja fysiikka
Toimipiste
TAMK Pääkampus
Opetuskielet
- Suomi
Koulutus
- Rakennustekniikan tutkinto-ohjelma
Opettaja
- Kirsi-Maria Rinneheimo
Vastuuhenkilö
Kirsi-Maria Rinneheimo
Ryhmät
-
22RTBRakennustekniikka
Tavoitteet (OJ)
Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa
Sisältö (OJ)
Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.
Esitietovaatimukset (OJ)
Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.
Arviointikriteerit, tyydyttävä (1-2) (OJ)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit, hyvä (3-4) (OJ)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit, kiitettävä (5) (OJ)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Tenttien ja uusintatenttien ajankohdat
Opintojakso suoritetaan kahdella välikokeella, joiden ajat ilmoitetaan kurssin aikana.
Uusintakokeet:
1. uusintakoe xx.3.2023 klo 17-20 ( paikka tarkentuu myöhemmin)
2. uusintakoe/ korotus xx.4.2023 klo 17-20 (paikka tarkentuu myöhemmin)
Uusinnat ja korotukset ovat vain ja ainoastaan tässä ilmoitettuna aikana, ei siis myöhemmin esim. seuraavana vuonna.
Uusintakokeeseen ja korotukseen ilmoittaudutaan opettajan ilmoittamalla tavalla.
Uusintaan osallistuminen edellyttää arvosanaa 0.
Yleiseti kokeesta:
Sairastapauksissa vaaditaan lääkärintodistus.
Poissaolo kokeesta vastaa hylättyä suoritusta.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Arviointimenetelmät ja arvioinnin perusteet
Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan kokeella, nettitehtävillä ja harjoitustehtävillä (tunti-, koti- ja ennakkotehtävillä), aktiivisella tuntiosallistumisella ja yhteistoiminnallisella oppimisella, jotka kaikki vaikuttavat arvosanaan. Kokeiden arvioinnissa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan, nettitehtävien ja kotitehtävien tekoa sekä välikokeisiin osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois. Varma läpipääsyraja on 30 % kokeiden yhteenlasketusta maksimipistemäärästä.
Arvosanan määräytyminen:
Välikokeet 75 %
Nettitehtävät 15 % - kts. erillinen ohje osiosta Nettitehtävät
Harjoitustehtävät 10 % - nämä tehtävät merkitään tehdyksi Harjoitustehtävälistaan ja palautetaan Moodleen
Harjoitustehtävillä saa lisäpisteitä oheisen taulukon mukaan:
yli 30% : 1
yli 50% : 2
yli 70% : 3
yli 90% : 4
Kotitehtäväpisteiden saamiseksi on osallistuttava kotitehtävien tarkistukseen (tarkemmat ohjeet Moodlessa).
Huom! Harjoitustehtäväpisteet ovat ehdollisia siihen asti, kun lopullinen opintojaksoarviointi tehdään. Palautuksia tarkistetaan ja verrataan rastilistaan yleensä vasta opintojakson lopulla. Mikäli näyttää siltä, että rastilistaan on merkitty tehtäviä väärin perustein, niin harjoitustehtäväpisteitä vähennetään tai ne mahdollisesti nollataan kokonaan.
Harjoitustehtäväpisteet eivät vaikuta kurssin läpipääsyyn vaan niillä voi korottaa arvosanaa. Lopullinen arvosana määräytyy koepisteiden, nettitehtävien ja harjoitustehtäväpisteiden yhteismäärästä sekä osallistumisaktiivisuudesta.
Uusinta- ja korotus:
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä-, nettitehtävä- eikä välikoepisteet.
Arviointikriteeri - hylätty (0)
Opiskelija osallistuu säännöllisesti opetukseen ja sen työmuotoihin, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Mikäli edellä mainitut kriteerit eivät täyty, niin opiskelija poistetaan toteutukselta. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.
Arviointiasteikko
0-5
Opiskelumuodot ja opetusmenetelmät
Lähiopetus/ etäopetus zoomin kautta, itsenäinen opiskelu, tuntiharjoitukset ja kotitehtävät, videomateriaalit, nettitehtävät (STACK-tehtävät), tentti
Oppimateriaalit
Opettajan Moodlessa jakama materiaali (sähköinen PLUSSA-materiaali, videot, interaktiiviset tehtävät, pdf-materiaalit)
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS/ TI-nspire CX II CAS -laskin.
Opiskelijan ajankäyttö ja kuormitus
Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-opetuksesta, jossa opettajaja mukana
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, nettitehtävät, opetusvideot)
-kokeista
Opettajan pitämiä lähitunteja on n. 30 h
Sisällön jaksotus
-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät
Lisätietoja opiskelijoille
Opetus alkaa viikolla 2 lukujärjestyksen mukaisesti.
Opintojaksoon on Moodle-toteutus. Opettaja lähettää Moodle-avaimen kurssille ilmoittautuneille ennen kurssia alkua sähköpostilla .
Arviointikriteerit - hylätty (0) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.
Arviointikriteerit - tyydyttävä (1-2) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti, numeerisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia.Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä on vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit - hyvä (3-4) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit - kiitettävä (5) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut sekä käyttää oikeita matemaattisia merkintöjä. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Ilmoittautumisaika
02.12.2022 - 15.02.2023
Ajoitus
01.01.2023 - 06.03.2023
Laajuus
3 op
Toteutustapa
Lähiopetus
Yksikkö
TAMK Matematiikka ja fysiikka
Toimipiste
TAMK Pääkampus
Opetuskielet
- Suomi
Koulutus
- Rakennustekniikan tutkinto-ohjelma
Opettaja
- Kirsi-Maria Rinneheimo
Vastuuhenkilö
Kirsi-Maria Rinneheimo
Ryhmät
-
22RTCRakennustekniikka
Tavoitteet (OJ)
Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa
Sisältö (OJ)
Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.
Esitietovaatimukset (OJ)
Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.
Arviointikriteerit, tyydyttävä (1-2) (OJ)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit, hyvä (3-4) (OJ)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit, kiitettävä (5) (OJ)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Tenttien ja uusintatenttien ajankohdat
Opintojakso suoritetaan kahdella välikokeella, joiden ajat ilmoitetaan kurssin aikana.
Uusintakokeet:
1. uusintakoe xx.3.2023 klo 17-20 ( paikka tarkentuu myöhemmin)
2. uusintakoe/ korotus xx.4.2023 klo 17-20 (paikka tarkentuu myöhemmin)
Uusinnat ja korotukset ovat vain ja ainoastaan tässä ilmoitettuna aikana, ei siis myöhemmin esim. seuraavana vuonna.
Uusintakokeeseen ja korotukseen ilmoittaudutaan opettajan ilmoittamalla tavalla.
Uusintaan osallistuminen edellyttää arvosanaa 0.
Yleiseti kokeesta:
Sairastapauksissa vaaditaan lääkärintodistus.
Poissaolo kokeesta vastaa hylättyä suoritusta.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Arviointimenetelmät ja arvioinnin perusteet
Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan kokeella, nettitehtävillä ja harjoitustehtävillä (tunti-, koti- ja ennakkotehtävillä), aktiivisella tuntiosallistumisella ja yhteistoiminnallisella oppimisella, jotka kaikki vaikuttavat arvosanaan. Kokeiden arvioinnissa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan, nettitehtävien ja kotitehtävien tekoa sekä välikokeisiin osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois. Varma läpipääsyraja on 30 % kokeiden yhteenlasketusta maksimipistemäärästä.
Arvosanan määräytyminen:
Välikokeet 75 %
Nettitehtävät 15 % - kts. erillinen ohje osiosta Nettitehtävät
Harjoitustehtävät 10 % - nämä tehtävät merkitään tehdyksi Harjoitustehtävälistaan ja palautetaan Moodleen
Harjoitustehtävillä saa lisäpisteitä oheisen taulukon mukaan:
yli 30% : 1
yli 50% : 2
yli 70% : 3
yli 90% : 4
Kotitehtäväpisteiden saamiseksi on osallistuttava kotitehtävien tarkistukseen (tarkemmat ohjeet Moodlessa).
Huom! Harjoitustehtäväpisteet ovat ehdollisia siihen asti, kun lopullinen opintojaksoarviointi tehdään. Palautuksia tarkistetaan ja verrataan rastilistaan yleensä vasta opintojakson lopulla. Mikäli näyttää siltä, että rastilistaan on merkitty tehtäviä väärin perustein, niin harjoitustehtäväpisteitä vähennetään tai ne mahdollisesti nollataan kokonaan.
Harjoitustehtäväpisteet eivät vaikuta kurssin läpipääsyyn vaan niillä voi korottaa arvosanaa. Lopullinen arvosana määräytyy koepisteiden, nettitehtävien ja harjoitustehtäväpisteiden yhteismäärästä sekä osallistumisaktiivisuudesta.
Uusinta- ja korotus:
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä-, nettitehtävä- eikä välikoepisteet.
Arviointikriteeri - hylätty (0)
Opiskelija osallistuu säännöllisesti opetukseen ja sen työmuotoihin, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Mikäli edellä mainitut kriteerit eivät täyty, niin opiskelija poistetaan toteutukselta. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.
Arviointiasteikko
0-5
Opiskelumuodot ja opetusmenetelmät
Lähiopetus/ etäopetus zoomin kautta, itsenäinen opiskelu, tuntiharjoitukset ja kotitehtävät, videomateriaalit, nettitehtävät (STACK-tehtävät), tentti
Oppimateriaalit
Opettajan Moodlessa jakama materiaali (sähköinen PLUSSA-materiaali, videot, interaktiiviset tehtävät, pdf-materiaalit)
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS/ TI-nspire CX II CAS -laskin.
Opiskelijan ajankäyttö ja kuormitus
Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-opetuksesta, jossa opettajaja mukana
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, nettitehtävät, opetusvideot)
-kokeista
Opettajan pitämiä lähitunteja on n. 30 h
Sisällön jaksotus
-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät
Lisätietoja opiskelijoille
Opetus alkaa viikolla 2 lukujärjestyksen mukaisesti.
Opintojaksoon on Moodle-toteutus. Opettaja lähettää Moodle-avaimen kurssille ilmoittautuneille ennen kurssia alkua sähköpostilla .
Arviointikriteerit - hylätty (0) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.
Arviointikriteerit - tyydyttävä (1-2) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti, numeerisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia.Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä on vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit - hyvä (3-4) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit - kiitettävä (5) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut sekä käyttää oikeita matemaattisia merkintöjä. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Ilmoittautumisaika
23.11.2022 - 12.01.2023
Ajoitus
01.01.2023 - 05.03.2023
Laajuus
3 op
Toteutustapa
Lähiopetus
Yksikkö
Matematiikka
Toimipiste
TAMK Pääkampus
Opetuskielet
- Suomi
Koulutus
- Laboratoriotekniikan tutkinto-ohjelma
Opettaja
- Sara Nortunen
Vastuuhenkilö
Sara Nortunen
Ryhmät
-
22LATELaboratoriotekniikka 2022
-
22BIOTBBiotuotetekniikan tutkinto-ohjelma, syksy 2022
Tavoitteet (OJ)
Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa
Sisältö (OJ)
Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.
Esitietovaatimukset (OJ)
Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.
Arviointikriteerit, tyydyttävä (1-2) (OJ)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit, hyvä (3-4) (OJ)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit, kiitettävä (5) (OJ)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Tenttien ja uusintatenttien ajankohdat
Opintojakson koe pidetään 22.2.2023 tuntiaikaan (alustava aika, voi tulla muutoksia).
Uusintaan osallistuminen edellyttää arvosanaa nolla.
1. uusinta 29.3.2023 klo 17.00-20.00 luokassa x.
2. uusinta/korotus 12.4.2023 klo 17.00-20.00 luokassa x.
Hyväksyttyä arvosanaa voi korottaa 2. uusintakokeessa.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Uusintakokeeseen ja korotukseen ilmoittaudutaan TAMKin tenttijärjestelmän kautta.
Arviointimenetelmät ja arvioinnin perusteet
Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan kokeella ja viikoittain tarkastettavilla harjoitustehtävillä, joiden tekeminen vaikuttaa arvosanaan. Kotitehtäväpisteiden saamiseksi tehtävät on palautettava kirjallisesti (tarkemmat ohjeet Moodlessa). Opintojaksoon saattaa sisältyä myös ryhmässä tehtäviä osioita. Kokeen arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan, kotitehtävien aktiivista tekemistä (vähintään 30%) sekä kurssikokeeseen osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois.
Harjoitustehtävillä saa lisäpisteitä oheisen taulukon mukaan:
yli 30% : 1
yli 50%: 2
yli 70% : 3
yli 90% : 4
Harjoitustehtäväpisteet eivät vaikuta kurssin läpipääsyyn vaan niillä voi korottaa arvosanaa. Lopullinen arvosana määräytyy koepisteiden ja harjoitustehtäväpisteiden yhteismäärästä sekä osallistumisaktiivisuudesta. Harjoitustehtäväpisteitä ei huomioida enää uusinta- ja korotustenttien yhteydessä.
Arviointikriteeri -hylätty(0):
Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.
Arviointiasteikko
0-5
Opiskelumuodot ja opetusmenetelmät
lähiopetus
etäopetus
ryhmätyö
harjoitukset
kurssikoe
uusintatentti
Oppimateriaalit
Opettajan jakama materiaali
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS-laskin.
Opiskelijan ajankäyttö ja kuormitus
Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-lähi/etäopetuksesta, jossa opettajaja mukana
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, STACK-tehtävät, opetusvideot)
-kokeesta
Opettajan pitämiä oppitunteja on n. 27-30 h.
Sisällön jaksotus
-regressio
-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät
Lisätietoja opiskelijoille
Opetus alkaa 11.1. lukujärjestyksen mukaisesti.
Opintojaksoon on Moodle-toteutus. Oppitunnit pyritään pitämään lähiopetuksena etämahdollisuuden kanssa. Tarvittaessa oppitunnit pidetään kokonaan etänä.
Arviointikriteerit - hylätty (0) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.
Arviointikriteerit - tyydyttävä (1-2) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti, numeerisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä on vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit - hyvä (3-4) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit - kiitettävä (5) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut sekä käyttää oikeita matemaattisia merkintöjä. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Ilmoittautumisaika
01.12.2022 - 03.01.2023
Ajoitus
01.01.2023 - 05.03.2023
Laajuus
3 op
Toteutustapa
Lähiopetus
Yksikkö
TAMK Matematiikka ja fysiikka
Toimipiste
TAMK Pääkampus
Opetuskielet
- Suomi
Koulutus
- Talotekniikan tutkinto-ohjelma, Sähköinen talotekniikka
Opettaja
- Pia Ruokonen-Kaukolinna
Vastuuhenkilö
Pia Ruokonen-Kaukolinna
Ryhmät
-
22I254Sähköinen talotekniikka
Tavoitteet (OJ)
Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa
Sisältö (OJ)
Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.
Esitietovaatimukset (OJ)
Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.
Arviointikriteerit, tyydyttävä (1-2) (OJ)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit, hyvä (3-4) (OJ)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit, kiitettävä (5) (OJ)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Tenttien ja uusintatenttien ajankohdat
Opintojakso suoritetaan viikottaisilla harjoitustehtävillä, nettitehtävillä ja kokeella.
Koe 21.2.2023 (Alustava aika, johon voi tulla muutoksia, joista tiedotetaan tunneilla ja sähköpostilla)
Koko kurssin uusintakoe järjestetään seuraavasti:
1. uusintakoe 29.3.2023 klo 17-20
2. uusintakoe/ korotus 12.4.2023 klo 17-20
Uusinnat ja korotukset ovat vain ja ainoastaan tässä ilmoitettuna aikana, ei siis myöhemmin esim. seuraavana vuonna.
Uusintakokeeseen ja korotukseen ilmoittaudutaan Pakin kautta..
Uusintaan osallistuminen edellyttää arvosanaa 0.
Yleiseti kokeesta:
Sairastapauksissa vaaditaan lääkärintodistus.
Poissaolo kokeesta vastaa hylättyä suoritusta.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Arviointimenetelmät ja arvioinnin perusteet
Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan kokeella/kokeilla, nettitehtävillä ja viikoittain tarkastettavilla harjoitustehtävillä,
Arvosteluun vaikuttavat nettitehtävät 15 %, kotitehtävät 10 % ja koe 75 %. Kokeen arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä osallistumista kurssin eri työmuotoihin koko opintojakson ajan (opetus, kotitehtävät, nettitehtävät ja koe) . Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois. Arvosanan 1 saa pistemäärällä, joka on 30 % kurssin eri arviointimuotojen yhteenlasketusta maksimipistemäärästä.
Uusinta- ja korotus:
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä-, nettitehtävä- eikä aiemmat koepisteet.
Arviointikriteeri - hylätty (0)
Opiskelija osallistuu säännöllisesti opetukseen ja sen työmuotoihin, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Mikäli edellä mainitut kriteerit eivät täyty, niin opiskelija poistetaan toteutukselta. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.
Arviointiasteikko
0-5
Opiskelumuodot ja opetusmenetelmät
Etäopetus zoomin kautta, itsenäinen opiskelu, videomateriaalit, tuntiharjoitukset ja kotitehtävät, nettitehtävät (STACK-tehtävät), tentti
Zoom-linkki löytyy kurssin Moodlesta.
Oppimateriaalit
Opettajan Moodlessa jakama materiaali (pdf-materiaalit, videot, interaktiiviset tehtävät)
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS/ TI-nspire CX II CAS -laskin.
Opiskelijan ajankäyttö ja kuormitus
Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
- etäopetuksesta, jossa opettajaja mukana
- mahdollisista ryhmätöistä (opettaja ei ole mukana)
- itsenäisestä työskentelystä (mm. kotitehtävät, nettitehtävät, opetusvideot)
- kokeista
Opettajan pitämiä lähitunteja on n. 30 h
Sisällön jaksotus
Sisällön jaksotus on suuntaa antava. Osa opsissa mainituista kokonaisuuksista on tarkoitus suorittaa itsenäisenä opiskeluna ja/tai ryhmätöinä.
-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät
Lisätietoja opiskelijoille
Opetus alkaa lukujärjestyksen mukaisesti viikolla 2.
Opintojaksoon tulee Moodle-toteutus. Toteutus ei näy automaattisesti, vaan se täytyy hakea kurssitunnuksella. Opettaja lähettää ilmoittautuneille ennen kurssin alkua Moodle-avaimen sähköpostilla. Etäopetuksen Zoom-linkki löytyy Moodlesta.
Toteutukset 5N00EG74-3081 (22I254) ja 5N00EG74-3083 (22I253) opetetaan yhdessä ja näillä on yhteinen Moodle, joka on nimetty toteutuksen 5N00EG74-3081 mukaan.
Arviointikriteerit - hylätty (0) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.
Arviointikriteerit - tyydyttävä (1-2) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti, numeerisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia.Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä on vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit - hyvä (3-4) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit - kiitettävä (5) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut sekä käyttää oikeita matemaattisia merkintöjä. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Ilmoittautumisaika
23.11.2022 - 12.01.2023
Ajoitus
01.01.2023 - 05.03.2023
Laajuus
3 op
Toteutustapa
Lähiopetus
Yksikkö
TAMK Matematiikka ja fysiikka
Toimipiste
TAMK Pääkampus
Opetuskielet
- Suomi
Koulutus
- Biotuotetekniikan tutkinto-ohjelma
Opettaja
- Sara Nortunen
Vastuuhenkilö
Sara Nortunen
Ryhmät
-
22BIOTBBiotuotetekniikan tutkinto-ohjelma, syksy 2022
Tavoitteet (OJ)
Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa
Sisältö (OJ)
Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.
Esitietovaatimukset (OJ)
Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.
Arviointikriteerit, tyydyttävä (1-2) (OJ)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit, hyvä (3-4) (OJ)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit, kiitettävä (5) (OJ)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Tenttien ja uusintatenttien ajankohdat
Opintojakson koe pidetään 22.2.2023 tuntiaikaan (alustava aika, voi tulla muutoksia).
Uusintaan osallistuminen edellyttää arvosanaa nolla.
1. uusinta 29.3.2023 klo 17.00-20.00 luokassa x.
2. uusinta/korotus 12.4.2023 klo 17.00-20.00 luokassa x.
Hyväksyttyä arvosanaa voi korottaa 2. uusintakokeessa.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Uusintakokeeseen ja korotukseen ilmoittaudutaan TAMKin tenttijärjestelmän kautta.
Arviointimenetelmät ja arvioinnin perusteet
Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan kokeella ja viikoittain tarkastettavilla harjoitustehtävillä, joiden tekeminen vaikuttaa arvosanaan. Kotitehtäväpisteiden saamiseksi tehtävät on palautettava kirjallisesti (tarkemmat ohjeet Moodlessa). Opintojaksoon saattaa sisältyä myös ryhmässä tehtäviä osioita. Kokeen arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan, kotitehtävien aktiivista tekemistä (vähintään 30%) sekä kurssikokeeseen osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois.
Harjoitustehtävillä saa lisäpisteitä oheisen taulukon mukaan:
yli 30% : 1
yli 50%: 2
yli 70% : 3
yli 90% : 4
Harjoitustehtäväpisteet eivät vaikuta kurssin läpipääsyyn vaan niillä voi korottaa arvosanaa. Lopullinen arvosana määräytyy koepisteiden ja harjoitustehtäväpisteiden yhteismäärästä sekä osallistumisaktiivisuudesta. Harjoitustehtäväpisteitä ei huomioida enää uusinta- ja korotustenttien yhteydessä.
Arviointikriteeri -hylätty(0):
Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.
Arviointiasteikko
0-5
Opiskelumuodot ja opetusmenetelmät
lähiopetus
etäopetus
ryhmätyö
harjoitukset
kurssikoe
uusintatentti
Oppimateriaalit
Opettajan jakama materiaali
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS-laskin.
Opiskelijan ajankäyttö ja kuormitus
Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-lähi/etäopetuksesta, jossa opettajaja mukana
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, STACK-tehtävät, opetusvideot)
-kokeesta
Opettajan pitämiä oppitunteja on n. 27-30 h.
Sisällön jaksotus
-regressio
-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät
Lisätietoja opiskelijoille
Opetus alkaa 11.1. lukujärjestyksen mukaisesti.
Opintojaksoon on Moodle-toteutus. Oppitunnit pyritään pitämään lähiopetuksena etämahdollisuuden kanssa. Tarvittaessa oppitunnit pidetään kokonaan etänä.
Arviointikriteerit - hylätty (0) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.
Arviointikriteerit - tyydyttävä (1-2) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti, numeerisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä on vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit - hyvä (3-4) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit - kiitettävä (5) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut sekä käyttää oikeita matemaattisia merkintöjä. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Ilmoittautumisaika
01.12.2022 - 03.01.2023
Ajoitus
01.01.2023 - 07.03.2023
Laajuus
3 op
Toteutustapa
Lähiopetus
Yksikkö
TAMK Matematiikka ja fysiikka
Toimipiste
TAMK Pääkampus
Opetuskielet
- Suomi
Koulutus
- Talotekniikan tutkinto-ohjelma, LVI-talotekniikka
Opettaja
- Pia Ruokonen-Kaukolinna
Vastuuhenkilö
Pia Ruokonen-Kaukolinna
Ryhmät
-
22I253LVI-talotekniikka
Tavoitteet (OJ)
Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa
Sisältö (OJ)
Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.
Esitietovaatimukset (OJ)
Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.
Arviointikriteerit, tyydyttävä (1-2) (OJ)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit, hyvä (3-4) (OJ)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit, kiitettävä (5) (OJ)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Tenttien ja uusintatenttien ajankohdat
Opintojakso suoritetaan viikottaisilla harjoitustehtävillä, nettitehtävillä ja kokeella.
Koe 21.2.2023 (Alustava aika, johon voi tulla muutoksia, joista tiedotetaan tunneilla ja sähköpostilla)
Koko kurssin uusintakoe järjestetään seuraavasti:
1. uusintakoe 29.3.2023 klo 17-20
2. uusintakoe/ korotus 12.4.2023 klo 17-20
Uusinnat ja korotukset ovat vain ja ainoastaan tässä ilmoitettuna aikana, ei siis myöhemmin esim. seuraavana vuonna.
Uusintakokeeseen ja korotukseen ilmoittaudutaan Pakin kautta..
Uusintaan osallistuminen edellyttää arvosanaa 0.
Yleiseti kokeesta:
Sairastapauksissa vaaditaan lääkärintodistus.
Poissaolo kokeesta vastaa hylättyä suoritusta.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Arviointimenetelmät ja arvioinnin perusteet
Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan kokeella/kokeilla, nettitehtävillä ja viikoittain tarkastettavilla harjoitustehtävillä,
Arvosteluun vaikuttavat nettitehtävät 15 %, kotitehtävät 10 % ja koe 75 %. Kokeen arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä osallistumista kurssin eri työmuotoihin koko opintojakson ajan (opetus, kotitehtävät, nettitehtävät ja koe) . Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois. Arvosanan 1 saa pistemäärällä, joka on 30 % kurssin eri arviointimuotojen yhteenlasketusta maksimipistemäärästä.
Uusinta- ja korotus:
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä-, nettitehtävä- eikä aiemmat koepisteet.
Arviointikriteeri - hylätty (0)
Opiskelija osallistuu säännöllisesti opetukseen ja sen työmuotoihin, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Mikäli edellä mainitut kriteerit eivät täyty, niin opiskelija poistetaan toteutukselta. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.
Arviointiasteikko
0-5
Opiskelumuodot ja opetusmenetelmät
Etäopetus zoomin kautta, itsenäinen opiskelu, videomateriaalit, tuntiharjoitukset ja kotitehtävät, nettitehtävät (STACK-tehtävät), tentti
Zoom-linkki löytyy kurssin Moodlesta.
Oppimateriaalit
Opettajan Moodlessa jakama materiaali (pdf-materiaalit, videot, interaktiiviset tehtävät)
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS/ TI-nspire CX II CAS -laskin.
Opiskelijan ajankäyttö ja kuormitus
Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
- etäopetuksesta, jossa opettajaja mukana
- mahdollisista ryhmätöistä (opettaja ei ole mukana)
- itsenäisestä työskentelystä (mm. kotitehtävät, nettitehtävät, opetusvideot)
- kokeista
Opettajan pitämiä lähitunteja on n. 30 h
Sisällön jaksotus
Sisällön jaksotus on suuntaa antava. Osa opsissa mainituista kokonaisuuksista on tarkoitus suorittaa itsenäisenä opiskeluna ja/tai ryhmätöinä.
-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät
Lisätietoja opiskelijoille
Opetus alkaa lukujärjestyksen mukaisesti viikolla 2.
Opintojaksoon tulee Moodle-toteutus. Toteutus ei näy automaattisesti, vaan se täytyy hakea kurssitunnuksella. Opettaja lähettää ilmoittautuneille ennen kurssin alkua Moodle-avaimen sähköpostilla. Etäopetuksen Zoom-linkki löytyy Moodlesta.
Toteutukset 5N00EG74-3081 (22I254) ja 5N00EG74-3083 (22I253) opetetaan yhdessä ja näillä on yhteinen Moodle, joka on nimetty toteutuksen 5N00EG74-3081 mukaan.
Arviointikriteerit - hylätty (0) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.
Arviointikriteerit - tyydyttävä (1-2) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti, numeerisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia.Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä on vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit - hyvä (3-4) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit - kiitettävä (5) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut sekä käyttää oikeita matemaattisia merkintöjä. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Ilmoittautumisaika
01.12.2022 - 03.01.2023
Ajoitus
01.01.2023 - 05.03.2023
Laajuus
3 op
Toteutustapa
Lähiopetus
Yksikkö
TAMK Matematiikka ja fysiikka
Toimipiste
TAMK Pääkampus
Opetuskielet
- Suomi
Koulutus
- Rakennustekniikan tutkinto-ohjelma
Opettaja
- Pia Ruokonen-Kaukolinna
Vastuuhenkilö
Pia Ruokonen-Kaukolinna
Ryhmät
-
22RTDRakennustekniikka
Tavoitteet (OJ)
Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa
Sisältö (OJ)
Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.
Esitietovaatimukset (OJ)
Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.
Arviointikriteerit, tyydyttävä (1-2) (OJ)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit, hyvä (3-4) (OJ)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit, kiitettävä (5) (OJ)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Tenttien ja uusintatenttien ajankohdat
Opintojakso suoritetaan viikottaisilla harjoitustehtävillä, nettitehtävillä ja kokeella.
Koe 24.2.2023 (Alustava aika, johon voi tulla muutoksia, joista tiedotetaan tunneilla ja sähköpostilla)
Koko kurssin uusintakoe järjestetään seuraavasti:
1. uusintakoe 29.3.2023 klo 17-20
2. uusintakoe/ korotus 12.4.2023 klo 17-20
Uusinnat ja korotukset ovat vain ja ainoastaan tässä ilmoitettuna aikana, ei siis myöhemmin esim. seuraavana vuonna.
Uusintakokeeseen ja korotukseen ilmoittaudutaan Pakin kautta..
Uusintaan osallistuminen edellyttää arvosanaa 0.
Yleiseti kokeesta:
Sairastapauksissa vaaditaan lääkärintodistus.
Poissaolo kokeesta vastaa hylättyä suoritusta.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Arviointimenetelmät ja arvioinnin perusteet
Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan kokeella/kokeilla, nettitehtävillä ja viikoittain tarkastettavilla harjoitustehtävillä,
Arvosteluun vaikuttavat nettitehtävät 15 %, kotitehtävät 10 % ja koe 75 %. Kokeen arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä osallistumista kurssin eri työmuotoihin koko opintojakson ajan (opetus, kotitehtävät, nettitehtävät ja koe) . Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois. Arvosanan 1 saa pistemäärällä, joka on 30 % kurssin eri arviointimuotojen yhteenlasketusta maksimipistemäärästä.
Uusinta- ja korotus:
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä-, nettitehtävä- eikä aiemmat koepisteet.
Arviointikriteeri - hylätty (0)
Opiskelija osallistuu säännöllisesti opetukseen ja sen työmuotoihin, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Mikäli edellä mainitut kriteerit eivät täyty, niin opiskelija poistetaan toteutukselta. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.
Arviointiasteikko
0-5
Opiskelumuodot ja opetusmenetelmät
Etäopetus zoomin kautta, itsenäinen opiskelu, videomateriaalit, tuntiharjoitukset ja kotitehtävät, nettitehtävät (STACK-tehtävät), tentti
Zoom-linkki löytyy kurssin Moodlesta.
Oppimateriaalit
Opettajan Moodlessa jakama materiaali (pdf-materiaalit, videot, interaktiiviset tehtävät)
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS/ TI-nspire CX II CAS -laskin.
Opiskelijan ajankäyttö ja kuormitus
Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
- etäopetuksesta, jossa opettajaja mukana
- mahdollisista ryhmätöistä (opettaja ei ole mukana)
- itsenäisestä työskentelystä (mm. kotitehtävät, nettitehtävät, opetusvideot)
- kokeista
Opettajan pitämiä lähitunteja on n. 30 h
Sisällön jaksotus
Sisällön jaksotus on suuntaa antava. Osa opsissa mainituista kokonaisuuksista on tarkoitus suorittaa itsenäisenä opiskeluna ja/tai ryhmätöinä.
-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät
Lisätietoja opiskelijoille
Opetus alkaa lukujärjestyksen mukaisesti viikolla 2.
Opintojaksoon tulee Moodle-toteutus. Toteutus ei näy automaattisesti, vaan se täytyy hakea kurssitunnuksella. Opettaja lähettää ilmoittautuneille ennen kurssin alkua Moodle-avaimen sähköpostilla. Etäopetuksen Zoom-linkki löytyy Moodlesta.
Toteutukset 5N00EG74-3054 (22RTA) ja 5N00EG74-3085 (22RTD) opetetaan yhdessä ja näillä on yhteinen Moodle, joka on nimetty toteutuksen 5N00EG74-3054 mukaan.
Arviointikriteerit - hylätty (0) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.
Arviointikriteerit - tyydyttävä (1-2) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti, numeerisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia.Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä on vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit - hyvä (3-4) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit - kiitettävä (5) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut sekä käyttää oikeita matemaattisia merkintöjä. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Ilmoittautumisaika
02.12.2022 - 31.12.2022
Ajoitus
01.01.2023 - 05.03.2023
Laajuus
3 op
Toteutustapa
Lähiopetus
Yksikkö
TAMK Matematiikka ja fysiikka
Toimipiste
TAMK Pääkampus
Opetuskielet
- Suomi
Koulutus
- Autotekniikan tutkinto-ohjelma
Opettaja
- Pia Ruokonen-Kaukolinna
Vastuuhenkilö
Pia Ruokonen-Kaukolinna
Ryhmät
-
22AUTOAAutotekniikka 2022
Tavoitteet (OJ)
Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa
Sisältö (OJ)
Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.
Esitietovaatimukset (OJ)
Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.
Arviointikriteerit, tyydyttävä (1-2) (OJ)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit, hyvä (3-4) (OJ)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit, kiitettävä (5) (OJ)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Tenttien ja uusintatenttien ajankohdat
Opintojakso suoritetaan viikottaisilla harjoitustehtävillä, nettitehtävillä ja kokeella.
Koe 24.2.2023 (Alustava aika, johon voi tulla muutoksia, joista tiedotetaan tunneilla ja sähköpostilla)
Koko kurssin uusintakoe järjestetään seuraavasti:
1. uusintakoe 29.3.2023 klo 17-20
2. uusintakoe/ korotus 12.4.2023 klo 17-20
Uusinnat ja korotukset ovat vain ja ainoastaan tässä ilmoitettuna aikana, ei siis myöhemmin esim. seuraavana vuonna.
Uusintakokeeseen ja korotukseen ilmoittaudutaan Pakin kautta..
Uusintaan osallistuminen edellyttää arvosanaa 0.
Yleiseti kokeesta:
Sairastapauksissa vaaditaan lääkärintodistus.
Poissaolo kokeesta vastaa hylättyä suoritusta.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Arviointimenetelmät ja arvioinnin perusteet
Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan kokeella/kokeilla, nettitehtävillä ja viikoittain tarkastettavilla harjoitustehtävillä,
Arvosteluun vaikuttavat nettitehtävät 15 %, kotitehtävät 10 % ja koe 75 %. Kokeen arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä osallistumista kurssin eri työmuotoihin koko opintojakson ajan (opetus, kotitehtävät, nettitehtävät ja koe) . Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois. Arvosanan 1 saa pistemäärällä, joka on 30 % kurssin eri arviointimuotojen yhteenlasketusta maksimipistemäärästä.
Uusinta- ja korotus:
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä-, nettitehtävä- eikä aiemmat koepisteet.
Arviointikriteeri - hylätty (0)
Opiskelija osallistuu säännöllisesti opetukseen ja sen työmuotoihin, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Mikäli edellä mainitut kriteerit eivät täyty, niin opiskelija poistetaan toteutukselta. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.
Arviointiasteikko
0-5
Opiskelumuodot ja opetusmenetelmät
Etäopetus zoomin kautta, itsenäinen opiskelu, videomateriaalit, tuntiharjoitukset ja kotitehtävät, nettitehtävät (STACK-tehtävät), tentti
Zoom-linkki löytyy kurssin Moodlesta.
Oppimateriaalit
Opettajan Moodlessa jakama materiaali (pdf-materiaalit, videot, interaktiiviset tehtävät)
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS/ TI-nspire CX II CAS -laskin.
Opiskelijan ajankäyttö ja kuormitus
Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
- etäopetuksesta, jossa opettajaja mukana
- mahdollisista ryhmätöistä (opettaja ei ole mukana)
- itsenäisestä työskentelystä (mm. kotitehtävät, nettitehtävät, opetusvideot)
- kokeista
Opettajan pitämiä lähitunteja on n. 30 h
Sisällön jaksotus
Sisällön jaksotus on suuntaa antava. Osa opsissa mainituista kokonaisuuksista on tarkoitus suorittaa itsenäisenä opiskeluna ja/tai ryhmätöinä.
-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät
Lisätietoja opiskelijoille
Opetus alkaa lukujärjestyksen mukaisesti viikolla 2.
Opintojaksoon tulee Moodle-toteutus. Toteutus ei näy automaattisesti, vaan se täytyy hakea kurssitunnuksella. Opettaja lähettää ilmoittautuneille ennen kurssin alkua Moodle-avaimen sähköpostilla. Etäopetuksen Zoom-linkki löytyy Moodlesta.
Toteutukset 5N00EG74-3090 (22AUTOA) ja 5N00EG74-3091 (22AUTOB) opetetaan yhdessä ja näillä on yhteinen Moodle, joka on nimetty toteutuksen 5N00EG74-3090 mukaan.
Arviointikriteerit - hylätty (0) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.
Arviointikriteerit - tyydyttävä (1-2) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti, numeerisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia.Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä on vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit - hyvä (3-4) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit - kiitettävä (5) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut sekä käyttää oikeita matemaattisia merkintöjä. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Ilmoittautumisaika
02.12.2022 - 31.12.2022
Ajoitus
01.01.2023 - 05.03.2023
Laajuus
3 op
Toteutustapa
Lähiopetus
Yksikkö
TAMK Matematiikka ja fysiikka
Toimipiste
TAMK Pääkampus
Opetuskielet
- Suomi
Koulutus
- Autotekniikan tutkinto-ohjelma
Opettaja
- Pia Ruokonen-Kaukolinna
Vastuuhenkilö
Pia Ruokonen-Kaukolinna
Ryhmät
-
22AUTOBAutotekniikka 2022
Tavoitteet (OJ)
Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa
Sisältö (OJ)
Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.
Esitietovaatimukset (OJ)
Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.
Arviointikriteerit, tyydyttävä (1-2) (OJ)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit, hyvä (3-4) (OJ)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit, kiitettävä (5) (OJ)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Arviointiasteikko
0-5
Ilmoittautumisaika
02.07.2022 - 26.08.2022
Ajoitus
29.08.2022 - 23.10.2022
Laajuus
3 op
Toteutustapa
Lähiopetus
Toimipiste
TAMK Pääkampus
Opetuskielet
- Suomi
Paikat
0 - 40
Koulutus
- Sähkö- ja automaatiotekniikan tutkinto-ohjelma
Opettaja
- Lasse Enäsuo
Vastuuhenkilö
Lasse Enäsuo
Ryhmät
-
22I231ASähkö- ja automaatiotekniikka
Tavoitteet (OJ)
Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa
Sisältö (OJ)
Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.
Esitietovaatimukset (OJ)
Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.
Arviointikriteerit, tyydyttävä (1-2) (OJ)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit, hyvä (3-4) (OJ)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit, kiitettävä (5) (OJ)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Tenttien ja uusintatenttien ajankohdat
Opintojakson koe pidetään viikolla 41 tuntiaikaan (tarkempi aika ilmoitetaan myöhemmin Moodlessa).
Uusintaan osallistuminen edellyttää arvosanaa nolla.
1. uusinta alustavasti 9.11.2022 klo 17.00-20.00 luokassa x.
2. uusinta/korotus alustavasti 7.12.2022 klo 17.00-20.00 luokassa x.
Hyväksyttyä arvosanaa voi korottaa 2. uusintakokeessa.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Uusintakokeeseen ja korotukseen ilmoittaudutaan TAMKin tenttijärjestelmän kautta.
Arviointimenetelmät ja arvioinnin perusteet
Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan kokeilla ja viikoittain tarkastettavilla harjoitustehtävillä, joiden tekeminen vaikuttaa arvosanaan. Kotitehtäväpisteiden saamiseksi on palautettava kotitehtävät ohjeiden mukaisesti Moodleen (tarkemmat ohjeet Moodlessa). Opintojaksoon saattaa sisältyä myös ryhmässä tehtäviä osioita. Kokeen arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys.
Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan, kotitehtävien aktiivista tekemistä sekä kurssikokeeseen osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois.
Lopullinen arvosana määräytyy koepisteiden (pikkukokeet ja loppukoe) ja harjoitustehtäväpisteiden yhteismäärästä sekä osallistumisaktiivisuudesta. Viikkokokeita ei huomioida enää uusinta- ja korotustenttien yhteydessä, vaan uusintakoe on erillinen arvioitava kokonaisuus.
Arviointikriteeri -hylätty(0):
Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.
Arviointiasteikko
0-5
Opiskelumuodot ja opetusmenetelmät
lähiopetus
ryhmätyö
harjoitukset
viikkokokeet
loppukoe
uusintatentti
Oppimateriaalit
Opettajan jakama materiaali
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS-laskin.
Opiskelijan ajankäyttö ja kuormitus
Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-lähi/etäopetuksesta, jossa opettajaja mukana
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, STACK-tehtävät, opetusvideot)
-kokeesta
Opettajan pitämiä oppitunteja on n. 30 h
Sisällön jaksotus
-regressio
-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät
Lisätietoja opiskelijoille
Opetus alkaa lukujärjestyksen mukaisesti.
Opintojaksoon on Moodle-toteutus. Oppitunnit pidetään kurssilla lähiopetuksena.
Arviointikriteerit - hylätty (0) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.
Arviointikriteerit - tyydyttävä (1-2) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti, numeerisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä on vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit - hyvä (3-4) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit - kiitettävä (5) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut sekä käyttää oikeita matemaattisia merkintöjä. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Ilmoittautumisaika
18.07.2022 - 26.08.2022
Ajoitus
29.08.2022 - 23.10.2022
Laajuus
3 op
Toteutustapa
Lähiopetus
Yksikkö
TAMK Matematiikka ja fysiikka
Toimipiste
TAMK Pääkampus
Opetuskielet
- Suomi
Koulutus
- Konetekniikan tutkinto-ohjelma
Opettaja
- Lasse Enäsuo
Vastuuhenkilö
Lasse Enäsuo
Ryhmät
-
22AI112PKonetekniikka 2022, monimuoto
Tavoitteet (OJ)
Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa
Sisältö (OJ)
Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.
Esitietovaatimukset (OJ)
Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.
Arviointikriteerit, tyydyttävä (1-2) (OJ)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit, hyvä (3-4) (OJ)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit, kiitettävä (5) (OJ)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Tenttien ja uusintatenttien ajankohdat
Opintojakson koe pidetään viikolla 41 (tarkempi aika ilmoitetaan myöhemmin Moodlessa).
Uusintaan osallistuminen edellyttää arvosanaa nolla.
1. uusinta alustavasti 9.11.2022 klo 17.00-20.00 luokassa x.
2. uusinta/korotus alustavasti 7.12.2022 klo 17.00-20.00 luokassa x.
Hyväksyttyä arvosanaa voi korottaa 2. uusintakokeessa.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Uusintakokeeseen ja korotukseen ilmoittaudutaan TAMKin tenttijärjestelmän kautta.
Arviointimenetelmät ja arvioinnin perusteet
Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan kokeella ja viikoittain tarkastettavilla harjoitustehtävillä, joiden tekeminen vaikuttaa arvosanaan. Kotitehtäväpisteiden saamiseksi on palautettava kotitehtävät ohjeiden mukaisesti Moodleen (tarkemmat ohjeet Moodlessa). Opintojaksoon saattaa sisältyä myös ryhmässä tehtäviä osioita. Kokeen arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys.
Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan, kotitehtävien aktiivista tekemistä sekä kurssikokeeseen osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois.
Lopullinen arvosana määräytyy koepisteiden ja harjoitustehtäväpisteiden yhteismäärästä sekä osallistumisaktiivisuudesta.
Arviointikriteeri -hylätty(0):
Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.
Arviointiasteikko
0-5
Opiskelumuodot ja opetusmenetelmät
lähiopetus
etäopetus
ryhmätyö
harjoitukset
loppukoe
uusintatentti
Oppimateriaalit
Opettajan jakama materiaali
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS-laskin.
Opiskelijan ajankäyttö ja kuormitus
Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-lähi/etäopetuksesta, jossa opettajaja mukana
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, STACK-tehtävät, opetusvideot)
-kokeesta
Opettajan pitämiä oppitunteja on n. 28 h (7 kertaa 4 oppituntia)
Sisällön jaksotus
-regressio
-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät
Lisätietoja opiskelijoille
Opetus alkaa lukujärjestyksen mukaisesti.
Opintojaksoon on Moodle-toteutus. Oppitunnit pidetään kurssilla lähiopetuksena tai etäopetuksena lukujärjestyksen mukaisesti. Hybridiopetusta ei järjestetä.
Arviointikriteerit - hylätty (0) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.
Arviointikriteerit - tyydyttävä (1-2) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti, numeerisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä on vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit - hyvä (3-4) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit - kiitettävä (5) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut sekä käyttää oikeita matemaattisia merkintöjä. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Ilmoittautumisaika
30.07.2022 - 05.09.2022
Ajoitus
22.08.2022 - 23.10.2022
Laajuus
3 op
Toteutustapa
Lähiopetus
Yksikkö
TAMK Matematiikka ja fysiikka
Opetuskielet
- Suomi
Koulutus
- Biotuotetekniikan tutkinto-ohjelma
Opettaja
- Sara Nortunen
Vastuuhenkilö
Sara Nortunen
Ryhmät
-
22BIOTABiotuotetekniikan tutkinto-ohjelma, kevät 2022
-
21KONEvaylaLAM väyläopiskelija Konetekniikka syksy 2021
Tavoitteet (OJ)
Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa
Sisältö (OJ)
Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.
Esitietovaatimukset (OJ)
Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.
Arviointikriteerit, tyydyttävä (1-2) (OJ)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit, hyvä (3-4) (OJ)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit, kiitettävä (5) (OJ)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Tenttien ja uusintatenttien ajankohdat
Opintojakson koe pidetään 13.10.2022 tuntiaikaan (alustava aika, voi tulla muutoksia).
Uusintaan osallistuminen edellyttää arvosanaa nolla.
1. uusinta xx.x.2022 klo 17.00-20.00 luokassa x.
2. uusinta/korotus xx.x.2022 klo 17.00-20.00 luokassa x.
Hyväksyttyä arvosanaa voi korottaa 2. uusintakokeessa.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Uusintakokeeseen ja korotukseen ilmoittaudutaan TAMKin tenttijärjestelmän kautta.
Arviointimenetelmät ja arvioinnin perusteet
Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan kokeilla ja viikoittain tarkastettavilla harjoitustehtävillä, joiden tekeminen vaikuttaa arvosanaan. Kotitehtäväpisteiden saamiseksi tehtävät on palautettava kirjallisesti (tarkemmat ohjeet Moodlessa). Opintojaksoon saattaa sisältyä myös ryhmässä tehtäviä osioita. Kokeen arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan, kotitehtävien aktiivista tekemistä (vähintään 30%) sekä kurssikokeeseen osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois.
Harjoitustehtävillä saa lisäpisteitä oheisen taulukon mukaan:
yli 30% : 1
yli 50%: 2
yli 70% : 3
yli 90% : 4
Harjoitustehtäväpisteet eivät vaikuta kurssin läpipääsyyn vaan niillä voi korottaa arvosanaa. Lopullinen arvosana määräytyy välikoepisteiden ja harjoitustehtäväpisteiden yhteismäärästä sekä osallistumisaktiivisuudesta. Harjoitustehtäväpisteitä ei huomioida enää uusinta- ja korotustenttien yhteydessä.
Arviointikriteeri -hylätty(0):
Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.
Arviointiasteikko
0-5
Opiskelumuodot ja opetusmenetelmät
lähiopetus
etäopetus
ryhmätyö
harjoitukset
välikokeet
uusintatentti
Oppimateriaalit
Opettajan jakama materiaali
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS-laskin.
Opiskelijan ajankäyttö ja kuormitus
Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-lähi/etäopetuksesta, jossa opettajaja mukana
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, STACK-tehtävät, opetusvideot)
-kokeesta
Opettajan pitämiä oppitunteja on n. 28 h
Sisällön jaksotus
-regressio
-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät
Lisätietoja opiskelijoille
Opetus alkaa 5.9. lukujärjestyksen mukaisesti.
Opintojaksoon on Moodle-toteutus. Oppitunnit pidetään ensisijaisesti lähiopetuksena.
Arviointikriteerit - hylätty (0) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.
Arviointikriteerit - tyydyttävä (1-2) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti, numeerisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä on vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit - hyvä (3-4) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit - kiitettävä (5) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut sekä käyttää oikeita matemaattisia merkintöjä. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Ilmoittautumisaika
27.12.2021 - 27.03.2022
Ajoitus
04.04.2022 - 29.05.2022
Laajuus
3 op
Virtuaaliosuus
3 op
Toteutustapa
Verkossa tapahtuva opiskelu
Opetuskielet
- Suomi
Paikat
0 - 100
Opettaja
- Ulla Miekkala
Vastuuhenkilö
Ulla Miekkala
Ryhmät
-
VAPAAVapaasti valittavat opinnot
Tavoitteet (OJ)
Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa
Sisältö (OJ)
Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.
Esitietovaatimukset (OJ)
Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.
Arviointikriteerit, tyydyttävä (1-2) (OJ)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit, hyvä (3-4) (OJ)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit, kiitettävä (5) (OJ)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Aika ja paikka
Aloitus ke 6.4. klo 17. Katso Zoom-linkki Moodlesta
Itsenäinen opiskelu viikoittain annetusta aiheesta, opettaja tavattavissa kerran viikossa Zoomin kautta (ke klo 17-18) ja siloin voi kysyä viikon aiheesta ja viikkotehtävistä.
Koe on valvottu etäkoe Moodlen ja zoomin avulla. Opiskelijalla on oltava kamera ja mikrofoni kokeen aikana käytössä.
Tenttien ja uusintatenttien ajankohdat
Opintojakson koe pidetään ke 25.5.2022.
1. uusintakoe 8.6.2022 klo 17.00-20.00
2. uusinta/ korotus 15.6.2022 klo 17.00-20.00
Hyväksyttyä arvosanaa voi korottaa 2. uusintakokeessa.
Arviointimenetelmät ja arvioinnin perusteet
Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan tekemällä viikottaisia harjoitustehtäviä, automaattisesti arvioitavia tehtäviä ja loppukokeella. Viikoittaisilla harjoitustehtävillä voi koota 20% ja nettitehtävillä toiset 20% kokonaispisteistä sekä loput 60% loppukokeessa. Hyväksyttyyn suoritukseen riittää 40% kokonaispisteistä. Kokeiden arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys.
Arviointiasteikko
0-5
Opiskelumuodot ja opetusmenetelmät
Verkkokurssi: Itsenäinen opiskelu, videomateriaalit, palautettavat viikkotehtävät, automaattisesti arvioitavat tehtävät, viikoittain opettajan kontaktitunti etänä, valvottu etäkoe
Oppimateriaalit
Opintojakson oppimateriaalina on sähköistä oppimateriaalia ja opetusvideoita, jotka opiskelija löytää kurssin Moodle-alustalta
Opiskelijan ajankäyttö ja kuormitus
Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
- itsenäisestä työskentelystä (mm. teorian ja harjoitusten opiskelu oppimateriaalin ja opetusvideoiden avulla, viikkotehtävät, nettitehtävät)
-viikoittaisista tapaamisista keskiviikkoisin klo 17-18, jossa opettajalta voi Zoomin kautta kysyä viikon aiheesta (ei pakollinen)
-valvotusta etäkokeesta
Opettajan pitämiä kontaktitunteja on 11 h (koe mukaan lukien)
Sisällön jaksotus
-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät
Lisätietoja opiskelijoille
Opetus alkaa ke 6.4.2022
Opintojaksoon on Moodle-toteutus.
Ilmoittautumisaika
02.12.2021 - 11.01.2022
Ajoitus
10.01.2022 - 27.02.2022
Laajuus
3 op
Toteutustapa
Lähiopetus
Yksikkö
TAMK Matematiikka ja fysiikka
Opetuskielet
- Suomi
Koulutus
- Biotuotetekniikan tutkinto-ohjelma
Opettaja
- Sara Nortunen
Vastuuhenkilö
Sara Nortunen
Ryhmät
-
21BIOTBBiotuotetekniikan tutkinto-ohjelma, syksy 2021
Tavoitteet (OJ)
Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa
Sisältö (OJ)
Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.
Esitietovaatimukset (OJ)
Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.
Arviointikriteerit, tyydyttävä (1-2) (OJ)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit, hyvä (3-4) (OJ)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit, kiitettävä (5) (OJ)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Tenttien ja uusintatenttien ajankohdat
Opintojakson koe pidetään 23.2.2022 tuntiaikaan (alustava aika, voi tulla muutoksia).
Uusintaan osallistuminen edellyttää arvosanaa nolla.
1. uusinta alustavasti 30.3.2022 klo 16.00-19.00 luokassa x.
2. uusinta/korotus alustavasti 13.4.2022 klo 16.00-19.00 luokassa x.
Hyväksyttyä arvosanaa voi korottaa 2. uusintakokeessa.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Uusintakokeeseen ja korotukseen ilmoittaudutaan TAMKin tenttijärjestelmän kautta.
Arviointimenetelmät ja arvioinnin perusteet
Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan kokeilla ja viikoittain tarkastettavilla harjoitustehtävillä, joiden tekeminen vaikuttaa arvosanaan. Kotitehtäväpisteiden saamiseksi on osallistuttava kotitehtävien tarkistukseen (tarkemmat ohjeet Moodlessa). Opintojaksoon saattaa sisätyä myös ryhmässä tehtäviä osioita. Kokeen arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan, kotitehtävien aktiivista tekemistä (vähintään 30%) sekä kurssikokeeseen osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois.
Harjoitustehtävillä saa lisäpisteitä oheisen taulukon mukaan:
yli 30% : 1
yli 50%: 2
yli 70% : 3
yli 90% : 4
Harjoitustehtäväpisteet eivät vaikuta kurssin läpipääsyyn vaan niillä voi korottaa arvosanaa. Lopullinen arvosana määräytyy koepisteiden (viikkokokeet ja loppukoe) ja harjoitustehtäväpisteiden yhteismäärästä sekä osallistumisaktiivisuudesta. Harjoitustehtäväpisteitä ei huomioida enää uusinta- ja korotustenttien yhteydessä.
Arviointikriteeri -hylätty(0):
Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.
Arviointiasteikko
0-5
Opiskelumuodot ja opetusmenetelmät
lähiopetus
etäopetus
ryhmätyö
harjoitukset
viikkokokeet
loppukoe
uusintatentti
Oppimateriaalit
Opettajan jakama materiaali
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS-laskin.
Opiskelijan ajankäyttö ja kuormitus
Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-lähi/etäopetuksesta, jossa opettajaja mukana
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, STACK-tehtävät, opetusvideot)
-kokeesta
Opettajan pitämiä oppitunteja on n. 28 h
Sisällön jaksotus
-regressio
-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät
Lisätietoja opiskelijoille
Opetus alkaa ke 12.1. lukujärjestyksen mukaisesti.
Opintojaksoon on Moodle-toteutus. Oppitunnit pidetään kurssin alussa etäopetuksena (linkki Moodle-sivulla), jatkossa mahdollisesti lähiopetuksena.
Arviointikriteerit - hylätty (0) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.
Arviointikriteerit - tyydyttävä (1-2) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti, numeerisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä on vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit - hyvä (3-4) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit - kiitettävä (5) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut sekä käyttää oikeita matemaattisia merkintöjä. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Ilmoittautumisaika
02.12.2021 - 07.01.2022
Ajoitus
10.01.2022 - 06.03.2022
Laajuus
3 op
Toteutustapa
Lähiopetus
Yksikkö
Rakennustekniikka
Toimipiste
TAMK Pääkampus
Opetuskielet
- Suomi
Koulutus
- Rakennustekniikan tutkinto-ohjelma
Opettaja
- Pia Ruokonen-Kaukolinna
Vastuuhenkilö
Pia Ruokonen-Kaukolinna
Ryhmät
-
21RTARakennustekniikka
Tavoitteet (OJ)
Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa
Sisältö (OJ)
Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.
Esitietovaatimukset (OJ)
Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.
Arviointikriteerit, tyydyttävä (1-2) (OJ)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit, hyvä (3-4) (OJ)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit, kiitettävä (5) (OJ)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Tenttien ja uusintatenttien ajankohdat
Opintojakso suoritetaan kahdella välikokeella, joiden ajat ilmoitetaan kurssin aikana. Välikokeita/viikkokokeita ei voi uusia eikä korottaa. Koko kurssin uusintakoe järjestetään seuraavasti:
Uusintakokeet:
1. uusintakoe 30.3.2022 klo 17-20 ( paikka tarkentuu myöhemmin)
2. uusintakoe/ korotus 13.4.2022 klo 17-20 (paikka tarkentuu myöhemmin)
Uusinnat ja korotukset ovat vain ja ainoastaan tässä ilmoitettuna aikana, ei siis myöhemmin esim. seuraavana vuonna.
Uusintakokeeseen ja korotukseen ilmoittaudutaan opettajan ilmoittamalla tavalla.
Uusintaan osallistuminen edellyttää arvosanaa 0.
Yleiseti kokeesta:
Sairastapauksissa vaaditaan lääkärintodistus.
Poissaolo kokeesta vastaa hylättyä suoritusta.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Arviointimenetelmät ja arvioinnin perusteet
Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan välikokeilla, nettitehtävillä ja viikoittain tarkastettavilla harjoitustehtävillä,
Arvosteluun vaikuttavat nettitehtävät 15 %, kotitehtävät 10 % ja välikokeet 75 % . Kokeiden arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan, nettitehtävien ja kotitehtävien tekoa sekä välikokeisiin osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois. Arvosanan 1 saa pistemäärällä, joka on 30 % kurssin eri arviointimuotojen yhteenlasketusta maksimipistemäärästä.
Harjoitustehtävillä saa lisäpisteitä oheisen taulukon mukaan:
yli 30% : 1
yli 50% : 2
yli 70% : 3
yli 90% : 4
Kotitehtäväpisteiden saamiseksi on osallistuttava kotitehtävien tarkistukseen (tarkemmat ohjeet Moodlessa).
Uusinta- ja korotus:
Välikokeita/viikkokokeita ei voi uusia. Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä-, nettitehtävä- eikä välikoepisteet.
Arviointikriteeri - hylätty (0)
Opiskelija osallistuu säännöllisesti opetukseen ja sen työmuotoihin, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Mikäli edellä mainitut kriteerit eivät täyty, niin opiskelija poistetaan toteutukselta. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.
Arviointiasteikko
0-5
Opiskelumuodot ja opetusmenetelmät
Lähiopetus/ etäopetus zoomin kautta, itsenäinen opiskelu, tuntiharjoitukset ja kotitehtävät, videomateriaalit, nettitehtävät (STACK-tehtävät), viikkokokeet, tentti
Oppimateriaalit
Opettajan Moodlessa jakama materiaali (pdf-materiaalit, videot, interaktiiviset tehtävät)
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS/ TI-nspire CX II CAS -laskin.
Opiskelijan ajankäyttö ja kuormitus
Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-opetuksesta, jossa opettajaja mukana
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, nettitehtävät, opetusvideot)
-kokeista
Opettajan pitämiä lähitunteja on n. 30 h
Sisällön jaksotus
-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät
Lisätietoja opiskelijoille
Opetus alkaa viikolla 2 lukujärjestyksen mukaisesti.
Opintojaksoon on Moodle-toteutus. Opettaja lähettää Moodle-avaimen kurssille ilmoittautuneille ennen kurssia alkua sähköpostilla .
Arviointikriteerit - hylätty (0) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.
Arviointikriteerit - tyydyttävä (1-2) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti, numeerisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia.Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä on vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit - hyvä (3-4) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit - kiitettävä (5) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut sekä käyttää oikeita matemaattisia merkintöjä. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Ilmoittautumisaika
25.11.2021 - 09.01.2022
Ajoitus
10.01.2022 - 27.02.2022
Laajuus
3 op
Toteutustapa
Lähiopetus
Yksikkö
TAMK Matematiikka ja fysiikka
Toimipiste
TAMK Pääkampus
Opetuskielet
- Suomi
Koulutus
- Laboratoriotekniikan tutkinto-ohjelma
Opettaja
- Jukka Suominen
Vastuuhenkilö
Jukka Suominen
Ryhmät
-
21LATELaboratoriotekniikka 2021
Tavoitteet (OJ)
Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa
Sisältö (OJ)
Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.
Esitietovaatimukset (OJ)
Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.
Arviointikriteerit, tyydyttävä (1-2) (OJ)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit, hyvä (3-4) (OJ)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit, kiitettävä (5) (OJ)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Aika ja paikka
Ajankohdat ja paikat ilmoitettu TUNIMoodlessa / lukujärjestyksissä
Tenttien ja uusintatenttien ajankohdat
Opintojakson koe pidetään 23.02.2022 klo 14.15-17.00. luokassa B4-27. (Tarvittaessa myös muissa luokissa.)
1. uusinta / korotus 15.03.2022 klo 08.15-11.00.
2. uusinta / korotus 08.04.2022 klo 08.15-11.00
Ilmoittautuminen uusintakokeisiin viimeistään 2 vuorokautta ennen kokeen alkamista. sähköpostitse.
Hyväksyttyä arvosanaa voi yrittää korottaa vain kerran.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Arviointimenetelmät ja arvioinnin perusteet
Opintojakso arvioidaan asteikolla 0-5.
Kotitehtävistä on mahdollista saada 1 piste / palautuskerta, yhteensä 8 pistettä. Kokeen maksimipistemäärä 42 pistettä. Yhteispistemäärä on täten 50 pistettä.
Arvosana määräytyy kotitehtävien ja kokeen yhteispistemäärän perusteella seuraavasti:
0 pistettä, arvosana 0
12,5 pistettä, arvosana 1
20 pistettä, arvosana 2
27,5 pistettä, arvosana 3
35 pistettä, arvosana 4
42,5 pistettä, arvosana 5
Arviointiasteikko
0-5
Opiskelumuodot ja opetusmenetelmät
- etäopetus
- tuntitehtävät, kotitehtävät
- lähikoe
Oppimateriaalit
Opettajan jakama materiaali Moodlessa
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS-laskin (tai vastaava)
Opiskelijan ajankäyttö ja kuormitus
Opiskelijan keskimääräinen työmäärä on 81 h, joka koostuu:
-etäopetuksesta
-itsenäisestä työskentelystä (mm. kotitehtävät, opetusvideot)
-kokeesta
Opettajan pitämiä lähitunteja koe mukaan lukien on 27 h.
Sisällön jaksotus
-erotusosamäärä ja derivaatta
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät
-regressio
Toteutuksen valinnaiset suoritustavat
-
Harjoittelu- ja työelämäyhteistyö
-
Kansainvälisyys
-
Lisätietoja opiskelijoille
Opetus alkaa 13.01.2022 lukujärjestyksen mukaisesti.
Arviointikriteerit - hylätty (0) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Katso kohta "Arviointimenetelmät ja arvioinnin perusteet".
Arviointikriteerit - tyydyttävä (1-2) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Katso kohta "Arviointimenetelmät ja arvioinnin perusteet".
Arviointikriteerit - hyvä (3-4) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Katso kohta "Arviointimenetelmät ja arvioinnin perusteet".
Arviointikriteerit - kiitettävä (5) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Katso kohta "Arviointimenetelmät ja arvioinnin perusteet".
Ilmoittautumisaika
01.12.2021 - 17.01.2022
Ajoitus
10.01.2022 - 27.02.2022
Laajuus
3 op
Toteutustapa
Lähiopetus
Yksikkö
Rakennustekniikka
Toimipiste
TAMK Pääkampus
Opetuskielet
- Suomi
Koulutus
- Rakennustekniikan tutkinto-ohjelma
Opettaja
- Anja Kuronen
Vastuuhenkilö
Anja Kuronen
Ryhmät
-
21RTCRakennustekniikka
Tavoitteet (OJ)
Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa
Sisältö (OJ)
Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.
Esitietovaatimukset (OJ)
Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.
Arviointikriteerit, tyydyttävä (1-2) (OJ)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit, hyvä (3-4) (OJ)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit, kiitettävä (5) (OJ)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Aika ja paikka
Lukujärjestyksen mukaisesti alkaen viikolla 2.
Tenttien ja uusintatenttien ajankohdat
Opintojakson tuntitestit (2 kpl)
26.1. Raja-arvo ja graafinen derivointi
9.2. Symbolinen derivointi
ja
23.2. loppukoe normaaliin tuntiaikaan.
Uusintakokeet:
1. uusintakoe 30.3.2022 klo 17.00-20.00 (aika ja paikka tarkentuu myöhemmin)
2. uusinta/ korotus 13.4.2022 klo 17.00-20.00 (aika ja paikka tarkentuu myöhemmin)
Uusintaan osallistuminen edellyttää arvosanaa nolla.
Hyväksyttyä arvosanaa voi korottaa 2. uusintakokeessa.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Uusintakokeeseen ja korotukseen ilmoittaudutaan opettajan ilmoittamalla tavalla.
Yleiseti kokeesta:
Sairastapauksissa vaaditaan lääkärintodistus.
Poissaolo kokeesta vastaa hylättyä suoritusta.
Arviointimenetelmät ja arvioinnin perusteet
Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan tuntitesteillä, loppukokeella ja viikoittain tarkastettavilla kotitehtävillä, joiden tekeminen vaikuttaa arvosanaan.
Tuntitesteistä pisteitä 6+6 ja loppukokeesta 18 pistettä. Varma läpipääsy on 40 % kokonaispistemäärästä.
Kotitehtäväpisteiden saamiseksi on osallistuttava kotitehtävien tarkistukseen (tarkemmat ohjeet Moodlessa).Opintojaksoon saattaa sisätyä myös ryhmässä tehtäviä osioita. Kokeen arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan sekä kurssikokeeseen osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois.
Kotitehtävillä saa lisäpisteitä oheisen taulukon mukaan:
yli 30% : 1
yli 50%: 2
yli 70% : 3
yli 90% : 4
Lopullinen arvosana määräytyy koepisteiden ja kotitehtäväpisteiden yhteismäärästä sekä osallistumisaktiivisuudesta.
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä- eikä tuntitestipisteet.
Arviointiasteikko
0-5
Opiskelumuodot ja opetusmenetelmät
Lähiopetus / etäopetus Zoomin kautta tilanteen mukaan, itsenäinen opiskelu, tuntiharjoitukset ja kotitehtävät, videomateriaalit, nettitehtävät, tuntitestit ja loppukoe.
Oppimateriaalit
Opettajan Moodlessa jakama materiaali.
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX II CAS -laskin.
Opiskelijan ajankäyttö ja kuormitus
Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-opetuksesta, jossa opettajaja mukana
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, nettitehtävät, opetusvideot)
-kokeesta
Opettajan pitämiä oppitunteja on n. 28 h
Sisällön jaksotus
-regressio
-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät
Toteutuksen valinnaiset suoritustavat
Ei ole
Harjoittelu- ja työelämäyhteistyö
Ei ole
Kansainvälisyys
Ei ole
Lisätietoja opiskelijoille
Opintojaksoon on Moodle-toteutus.
Arviointikriteerit - hylätty (0) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Opiskelija osallistuu säännöllisesti opetukseen ja suorittaa opintojakson tuntitestit ja loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.
Arviointikriteerit - tyydyttävä (1-2) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti, numeerisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä on vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit - hyvä (3-4) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit - kiitettävä (5) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut sekä käyttää oikeita matemaattisia merkintöjä. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Ilmoittautumisaika
01.12.2021 - 07.01.2022
Ajoitus
10.01.2022 - 07.03.2022
Laajuus
3 op
Toteutustapa
Lähiopetus
Yksikkö
Rakennustekniikka
Toimipiste
TAMK Pääkampus
Opetuskielet
- Suomi
Koulutus
- Rakennustekniikan tutkinto-ohjelma
Opettaja
- Pia Ruokonen-Kaukolinna
Vastuuhenkilö
Pia Ruokonen-Kaukolinna
Ryhmät
-
21RTDRakennustekniikka
Tavoitteet (OJ)
Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa
Sisältö (OJ)
Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.
Esitietovaatimukset (OJ)
Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.
Arviointikriteerit, tyydyttävä (1-2) (OJ)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit, hyvä (3-4) (OJ)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit, kiitettävä (5) (OJ)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Tenttien ja uusintatenttien ajankohdat
Opintojakso suoritetaan kahdella välikokeella, joiden ajat ilmoitetaan kurssin aikana. Välikokeita/viikkokokeita ei voi uusia eikä korottaa. Koko kurssin uusintakoe järjestetään seuraavasti:
1. uusintakoe 30.3.2022 klo 17-20 ( paikka tarkentuu myöhemmin)
2. uusintakoe/ korotus 13.4.2022 klo 17-20 (paikka tarkentuu myöhemmin)
Uusinnat ja korotukset ovat vain ja ainoastaan tässä ilmoitettuna aikana, ei siis myöhemmin esim. seuraavana vuonna.
Uusintakokeeseen ja korotukseen ilmoittaudutaan opettajan ilmoittamalla tavalla.
Uusintaan osallistuminen edellyttää arvosanaa 0.
Yleiseti kokeesta:
Sairastapauksissa vaaditaan lääkärintodistus.
Poissaolo kokeesta vastaa hylättyä suoritusta.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Arviointimenetelmät ja arvioinnin perusteet
Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan välikokeilla, nettitehtävillä ja viikoittain tarkastettavilla harjoitustehtävillä,
Arvosteluun vaikuttavat nettitehtävät 15 %, kotitehtävät 10 % ja välikokeet 75 % . Kokeiden arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan, nettitehtävien ja kotitehtävien tekoa sekä välikokeisiin osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois. Arvosanan 1 saa pistemäärällä, joka on 30 % kurssin eri arviointimuotojen yhteenlasketusta maksimipistemäärästä.
Harjoitustehtävillä saa lisäpisteitä oheisen taulukon mukaan:
yli 30% : 1
yli 50% : 2
yli 70% : 3
yli 90% : 4
Kotitehtäväpisteiden saamiseksi on osallistuttava kotitehtävien tarkistukseen (tarkemmat ohjeet Moodlessa).
Uusinta- ja korotus:
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä-, nettitehtävä- eikä välikoepisteet.
Arviointikriteeri - hylätty (0)
Opiskelija osallistuu säännöllisesti opetukseen ja sen työmuotoihin, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Mikäli edellä mainitut kriteerit eivät täyty, niin opiskelija poistetaan toteutukselta. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.
Arviointiasteikko
0-5
Opiskelumuodot ja opetusmenetelmät
Lähiopetus/ etäopetus zoomin kautta, itsenäinen opiskelu, tuntiharjoitukset ja kotitehtävät, videomateriaalit, nettitehtävät (STACK-tehtävät), viikkokokeet, tentti
Oppimateriaalit
Opettajan Moodlessa jakama materiaali (pdf-materiaalit, videot, interaktiiviset tehtävät)
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS/ TI-nspire CX II CAS -laskin.
Opiskelijan ajankäyttö ja kuormitus
Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-opetuksesta, jossa opettajaja mukana
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, nettitehtävät, opetusvideot)
-kokeista
Opettajan pitämiä lähitunteja on n. 30 h
Sisällön jaksotus
-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät
Lisätietoja opiskelijoille
Opetus alkaa viikolla 2 lukujärjestyksen mukaisesti.
Opintojaksoon on Moodle-toteutus. Opettaja lähettää Moodle-avaimen kurssille ilmoittautuneille ennen kurssia alkua sähköpostilla .
Arviointikriteerit - hylätty (0) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.
Arviointikriteerit - tyydyttävä (1-2) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti, numeerisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia.Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä on vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit - hyvä (3-4) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit - kiitettävä (5) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut sekä käyttää oikeita matemaattisia merkintöjä. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Ilmoittautumisaika
02.12.2021 - 11.01.2022
Ajoitus
10.01.2022 - 06.03.2022
Laajuus
3 op
Toteutustapa
Lähiopetus
Yksikkö
TAMK Matematiikka ja fysiikka
Toimipiste
TAMK Pääkampus
Opetuskielet
- Suomi
Koulutus
- Konetekniikan tutkinto-ohjelma
Opettaja
- Kirsi-Maria Rinneheimo
Vastuuhenkilö
Kirsi-Maria Rinneheimo
Ryhmät
-
21I112AKonetekniikka 2021
Tavoitteet (OJ)
Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa
Sisältö (OJ)
Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.
Esitietovaatimukset (OJ)
Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.
Arviointikriteerit, tyydyttävä (1-2) (OJ)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit, hyvä (3-4) (OJ)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit, kiitettävä (5) (OJ)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Tenttien ja uusintatenttien ajankohdat
Opintojakso suoritetaan kahdella välikokeella, joiden ajat ilmoitetaan kurssin aikana.
Uusintakokeet:
1. uusintakoe 30.3.2022 klo 17-20 ( paikka tarkentuu myöhemmin)
2. uusintakoe/ korotus 13.4.2022 klo 17-20 (paikka tarkentuu myöhemmin)
Uusinnat ja korotukset ovat vain ja ainoastaan tässä ilmoitettuna aikana, ei siis myöhemmin esim. seuraavana vuonna.
Uusintakokeeseen ja korotukseen ilmoittaudutaan opettajan ilmoittamalla tavalla.
Uusintaan osallistuminen edellyttää arvosanaa 0.
Yleiseti kokeesta:
Sairastapauksissa vaaditaan lääkärintodistus.
Poissaolo kokeesta vastaa hylättyä suoritusta.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Arviointimenetelmät ja arvioinnin perusteet
Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan välikokeilla, nettitehtävillä ja viikoittain tarkastettavilla harjoitustehtävillä,
Arviointiin vaikuttavat nettitehtävät 15 %, kotitehtävät 10 % ja välikokeet 75 % . Kokeiden arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan, nettitehtävien ja kotitehtävien tekoa sekä välikokeisiin osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois. Arvosanan 1 saa pistemäärällä, joka on 30 % kurssin eri arviointimuotojen yhteenlasketusta maksimipistemäärästä.
Harjoitustehtävillä saa lisäpisteitä oheisen taulukon mukaan:
yli 30% : 1
yli 50% : 2
yli 70% : 3
yli 90% : 4
Kotitehtäväpisteiden saamiseksi on osallistuttava kotitehtävien tarkistukseen (tarkemmat ohjeet Moodlessa).
Uusinta- ja korotus:
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä-, nettitehtävä- eikä välikoepisteet.
Arviointikriteeri - hylätty (0)
Opiskelija osallistuu säännöllisesti opetukseen ja sen työmuotoihin, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Mikäli edellä mainitut kriteerit eivät täyty, niin opiskelija poistetaan toteutukselta. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.
Arviointiasteikko
0-5
Opiskelumuodot ja opetusmenetelmät
Lähiopetus/ etäopetus zoomin kautta, itsenäinen opiskelu, tuntiharjoitukset ja kotitehtävät, videomateriaalit, nettitehtävät (STACK-tehtävät), välikokeet, tentti
Oppimateriaalit
Opettajan Moodlessa jakama materiaali (sähköinen PLUSSA-materiaali, videot, interaktiiviset tehtävät, pdf-materiaalit)
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS/ TI-nspire CX II CAS -laskin.
Opiskelijan ajankäyttö ja kuormitus
Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-opetuksesta, jossa opettajaja mukana
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, nettitehtävät, opetusvideot)
-kokeista
Opettajan pitämiä lähitunteja on n. 30 h
Sisällön jaksotus
-regressio
-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät
Lisätietoja opiskelijoille
Opetus alkaa viikolla 2 lukujärjestyksen mukaisesti.
Opintojaksoon on Moodle-toteutus. Opettaja lähettää Moodle-avaimen kurssille ilmoittautuneille ennen kurssia alkua sähköpostilla .
Arviointikriteerit - hylätty (0) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.
Arviointikriteerit - tyydyttävä (1-2) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti, numeerisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia.Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä on vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit - hyvä (3-4) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit - kiitettävä (5) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut sekä käyttää oikeita matemaattisia merkintöjä. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Ilmoittautumisaika
02.12.2021 - 11.01.2022
Ajoitus
10.01.2022 - 27.02.2022
Laajuus
3 op
Toteutustapa
Lähiopetus
Yksikkö
TAMK Matematiikka ja fysiikka
Toimipiste
TAMK Pääkampus
Opetuskielet
- Suomi
Koulutus
- Konetekniikan tutkinto-ohjelma
Opettaja
- Ulla Miekkala
Vastuuhenkilö
Ulla Miekkala
Ryhmät
-
21I112BKonetekniikka 2021
Tavoitteet (OJ)
Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa
Sisältö (OJ)
Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.
Esitietovaatimukset (OJ)
Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.
Arviointikriteerit, tyydyttävä (1-2) (OJ)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit, hyvä (3-4) (OJ)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit, kiitettävä (5) (OJ)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Tenttien ja uusintatenttien ajankohdat
Opintojakson koe pidetään 2x.2.2022 tuntiaikaan (alustava aika, voi tulla muutoksia).
Uusintaan osallistuminen edlyttää arvosanaa nolla.
1. uusinta 30.3.2022 klo 17.00-20.00 (paikka ilmoitetaan ennen tenttiä)
2. uusinta/ korotus 13.4.2022 klo 17.00-20.00 (paikka ilmoitetaan ennen tenttiä)
Hyväksyttyä arvosanaa voi korottaa 2. uusintakokeessa.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Uusintakokeeseen ja korotukseen ilmoittaudutaan TAMKin tenttijärjestelmän kautta.
Arviointimenetelmät ja arvioinnin perusteet
Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan kokeilla, nettitehtävillä ja viikoittain tarkastettavilla harjoitustehtävillä, joiden tekeminen vaikuttaa arvosanaan. Kotitehtäväpisteiden saamiseksi on osallistuttava kotitehtävien tarkistukseen (tarkemmat ohjeet Moodlessa).Opintojaksoon saattaa sisältyä myös ryhmässä tehtäviä osioita. Kokeiden arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan, nettitehtävien ja kotitehtävien tekoa sekä kurssikokeisiin osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois. Varma läpipääsyraja on 1/3 kurssikokeen ja nettitehtävien yhteenlasketusta maksimipistemäärästä.
Harjoitustehtävillä saa lisäpisteitä oheisen taulukon mukaan:
yli 30% : 1
yli 50%: 2
yli 70% : 3
yli 90% : 4
Harjoitustehtäväpisteet eivät vaikuta kurssin läpipääsyyn vaan niillä voi korottaa arvosanaa. Lopullinen arvosana määräytyy koepisteiden, nettitehtävien ja harjoitustehtäväpisteiden yhteismäärästä sekä osallistumisaktiivisuudesta. Harjoitustehtäväpisteitä ei huomioida enää uusinta- ja korotustenttien yhteydessä.
Arviointikriteeri -hylätty(0):
Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson kokeisiin, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.
Arviointiasteikko
0-5
Opiskelumuodot ja opetusmenetelmät
Lähiopetus (aloitus etäopetuksena zoomin avulla), itsenäinen opiskelu, tuntiharjoitukset ja kotitehtävät, videomateriaalit, nettitehtävät, tentti
Oppimateriaalit
Opettajan Moodlessa jakama materiaali (sähköinen PLUSSA-materiaali, videot, interaktiiviset tehtävät, pdf-materiaalit, STACK-tehtävät)
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS/ TI-nspire CX II CAS -laskin.
Opiskelijan ajankäyttö ja kuormitus
Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-opetuksesta, jossa opettajaja mukana (Zoom-tunnit)
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, nettitehtävät, opetusvideot)
-kokeesta
Opettajan pitämiä lähitunteja on n. 30 h
Sisällön jaksotus
-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät
Lisätietoja opiskelijoille
Opetus alkaa viikolla 2 lukujärjestyksen mukaisesti.
Opintojaksoon on Moodle-toteutus.
Arviointikriteerit - hylätty (0) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson kokeisiin, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.
Arviointikriteerit - tyydyttävä (1-2) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti, numeerisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia.Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä on vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit - hyvä (3-4) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit - kiitettävä (5) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut sekä käyttää oikeita matemaattisia merkintöjä. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Ilmoittautumisaika
02.12.2021 - 11.01.2022
Ajoitus
10.01.2022 - 26.02.2022
Laajuus
3 op
Toteutustapa
Lähiopetus
Yksikkö
TAMK Matematiikka ja fysiikka
Toimipiste
TAMK Pääkampus
Opetuskielet
- Suomi
Koulutus
- Konetekniikan tutkinto-ohjelma
Opettaja
- Sara Nortunen
Vastuuhenkilö
Sara Nortunen
Ryhmät
-
21I112CKonetekniikka 2021
Tavoitteet (OJ)
Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa
Sisältö (OJ)
Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.
Esitietovaatimukset (OJ)
Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.
Arviointikriteerit, tyydyttävä (1-2) (OJ)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit, hyvä (3-4) (OJ)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit, kiitettävä (5) (OJ)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Tenttien ja uusintatenttien ajankohdat
Opintojakson koe pidetään 24.2.2022 tuntiaikaan (alustava aika, voi tulla muutoksia).
Uusintaan osallistuminen edellyttää arvosanaa nolla.
1. uusinta alustavasti 30.3.2022 klo 16.00-19.00 luokassa x.
2. uusinta/korotus alustavasti 13.4.2022 klo 16.00-19.00 luokassa x.
Hyväksyttyä arvosanaa voi korottaa 2. uusintakokeessa.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Uusintakokeeseen ja korotukseen ilmoittaudutaan TAMKin tenttijärjestelmän kautta.
Arviointimenetelmät ja arvioinnin perusteet
Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan kokeilla ja viikoittain tarkastettavilla harjoitustehtävillä, joiden tekeminen vaikuttaa arvosanaan. Kotitehtäväpisteiden saamiseksi on osallistuttava kotitehtävien tarkistukseen (tarkemmat ohjeet Moodlessa). Opintojaksoon saattaa sisätyä myös ryhmässä tehtäviä osioita. Kokeen arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan, kotitehtävien aktiivista tekemistä (vähintään 30%) sekä kurssikokeeseen osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois.
Harjoitustehtävillä saa lisäpisteitä oheisen taulukon mukaan:
yli 30% : 1
yli 50%: 2
yli 70% : 3
yli 90% : 4
Harjoitustehtäväpisteet eivät vaikuta kurssin läpipääsyyn vaan niillä voi korottaa arvosanaa. Lopullinen arvosana määräytyy koepisteiden (viikkokokeet ja loppukoe) ja harjoitustehtäväpisteiden yhteismäärästä sekä osallistumisaktiivisuudesta. Harjoitustehtäväpisteitä ei huomioida enää uusinta- ja korotustenttien yhteydessä.
Arviointikriteeri -hylätty(0):
Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.
Arviointiasteikko
0-5
Opiskelumuodot ja opetusmenetelmät
lähiopetus
etäopetus
ryhmätyö
harjoitukset
viikkokokeet
loppukoe
uusintatentti
Oppimateriaalit
Opettajan jakama materiaali
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS-laskin.
Opiskelijan ajankäyttö ja kuormitus
Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-lähi/etäopetuksesta, jossa opettajaja mukana
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, STACK-tehtävät, opetusvideot)
-kokeesta
Opettajan pitämiä oppitunteja on n. 28 h
Sisällön jaksotus
-regressio
-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät
Lisätietoja opiskelijoille
Opetus alkaa to 13.1. lukujärjestyksen mukaisesti.
Opintojaksoon on Moodle-toteutus. Oppitunnit pidetään kurssin alussa etäopetuksena (linkki Moodle-sivulla), jatkossa mahdollisesti lähiopetuksena.
Arviointikriteerit - hylätty (0) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.
Arviointikriteerit - tyydyttävä (1-2) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti, numeerisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä on vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit - hyvä (3-4) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit - kiitettävä (5) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut sekä käyttää oikeita matemaattisia merkintöjä. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Ilmoittautumisaika
01.12.2021 - 17.01.2022
Ajoitus
10.01.2022 - 06.03.2022
Laajuus
3 op
Toteutustapa
Lähiopetus
Yksikkö
Talotekniikka
Toimipiste
TAMK Pääkampus
Opetuskielet
- Suomi
Paikat
1 - 45
Koulutus
- Talotekniikan tutkinto-ohjelma, LVI-talotekniikka
Opettaja
- Kirsi-Maria Rinneheimo
Vastuuhenkilö
Kirsi-Maria Rinneheimo
Ryhmät
-
21I253LVI-talotekniikka
Tavoitteet (OJ)
Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa
Sisältö (OJ)
Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.
Esitietovaatimukset (OJ)
Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.
Arviointikriteerit, tyydyttävä (1-2) (OJ)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit, hyvä (3-4) (OJ)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit, kiitettävä (5) (OJ)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Tenttien ja uusintatenttien ajankohdat
Opintojakso suoritetaan kahdella välikokeella, joiden ajat ilmoitetaan kurssin aikana.
Uusintakokeet:
1. uusintakoe 30.3.2022 klo 17-20 ( paikka tarkentuu myöhemmin)
2. uusintakoe/ korotus 13.4.2022 klo 17-20 (paikka tarkentuu myöhemmin)
Uusinnat ja korotukset ovat vain ja ainoastaan tässä ilmoitettuna aikana, ei siis myöhemmin esim. seuraavana vuonna.
Uusintakokeeseen ja korotukseen ilmoittaudutaan opettajan ilmoittamalla tavalla.
Uusintaan osallistuminen edellyttää arvosanaa 0.
Yleiseti kokeesta:
Sairastapauksissa vaaditaan lääkärintodistus.
Poissaolo kokeesta vastaa hylättyä suoritusta.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Arviointimenetelmät ja arvioinnin perusteet
Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan välikokeilla, nettitehtävillä ja viikoittain tarkastettavilla harjoitustehtävillä,
Arviointiin vaikuttavat nettitehtävät 15 %, kotitehtävät 10 % ja välikokeet 75 % . Kokeiden arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan, nettitehtävien ja kotitehtävien tekoa sekä välikokeisiin osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois. Arvosanan 1 saa pistemäärällä, joka on 30 % kurssin eri arviointimuotojen yhteenlasketusta maksimipistemäärästä.
Harjoitustehtävillä saa lisäpisteitä oheisen taulukon mukaan:
yli 30% : 1
yli 50% : 2
yli 70% : 3
yli 90% : 4
Kotitehtäväpisteiden saamiseksi on osallistuttava kotitehtävien tarkistukseen (tarkemmat ohjeet Moodlessa).
Uusinta- ja korotus:
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä-, nettitehtävä- eikä välikoepisteet.
Arviointikriteeri - hylätty (0)
Opiskelija osallistuu säännöllisesti opetukseen ja sen työmuotoihin, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Mikäli edellä mainitut kriteerit eivät täyty, niin opiskelija poistetaan toteutukselta. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.
Arviointiasteikko
0-5
Opiskelumuodot ja opetusmenetelmät
Lähiopetus/ etäopetus zoomin kautta, itsenäinen opiskelu, tuntiharjoitukset ja kotitehtävät, videomateriaalit, nettitehtävät (STACK-tehtävät), välikokeet, tentti
Oppimateriaalit
Opettajan Moodlessa jakama materiaali (sähköinen PLUSSA-materiaali, videot, interaktiiviset tehtävät, pdf-materiaalit)
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS/ TI-nspire CX II CAS -laskin.
Opiskelijan ajankäyttö ja kuormitus
Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-opetuksesta, jossa opettajaja mukana
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, nettitehtävät, opetusvideot)
-kokeista
Opettajan pitämiä lähitunteja on n. 30 h
Sisällön jaksotus
-regressio
-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät
Lisätietoja opiskelijoille
Opetus alkaa viikolla 2 lukujärjestyksen mukaisesti.
Opintojaksoon on Moodle-toteutus. Opettaja lähettää Moodle-avaimen kurssille ilmoittautuneille ennen kurssia alkua sähköpostilla .
Arviointikriteerit - hylätty (0) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.
Arviointikriteerit - tyydyttävä (1-2) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti, numeerisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia.Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä on vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit - hyvä (3-4) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit - kiitettävä (5) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut sekä käyttää oikeita matemaattisia merkintöjä. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Ilmoittautumisaika
02.12.2021 - 11.01.2022
Ajoitus
10.01.2022 - 26.02.2022
Laajuus
3 op
Toteutustapa
Lähiopetus
Yksikkö
Avoin AMK
Toimipiste
TAMK Pääkampus
Opetuskielet
- Suomi
Koulutus
- Avoin ammattikorkeakoulu
Opettaja
- Anja Kuronen
Vastuuhenkilö
Anja Kuronen
Ryhmät
-
21AVOTTTeollisuusteknologiayksikön avoimen polkuryhmä
Tavoitteet (OJ)
Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa
Sisältö (OJ)
Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.
Esitietovaatimukset (OJ)
Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.
Arviointikriteerit, tyydyttävä (1-2) (OJ)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit, hyvä (3-4) (OJ)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit, kiitettävä (5) (OJ)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Aika ja paikka
Lukujärjestyksen mukaisesti alkaen viikolla 2.
Tenttien ja uusintatenttien ajankohdat
Opintojakson tuntitestit (2 kpl)
31.1. Raja-arvo ja graafinen derivointi
14.2. Symbolinen derivointi
ja
25.2. loppukoe normaaliin tuntiaikaan.
Uusintakokeet:
1. uusintakoe 30.3.2022 klo 17.00-20.00 (aika ja paikka tarkentuu myöhemmin)
2. uusinta/ korotus 13.4.2022 klo 17.00-20.00 (aika ja paikka tarkentuu myöhemmin)
Uusintaan osallistuminen edellyttää arvosanaa nolla.
Hyväksyttyä arvosanaa voi korottaa 2. uusintakokeessa.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Uusintakokeeseen ja korotukseen ilmoittaudutaan opettajan ilmoittamalla tavalla.
Yleiseti kokeesta:
Sairastapauksissa vaaditaan lääkärintodistus.
Poissaolo kokeesta vastaa hylättyä suoritusta.
Arviointimenetelmät ja arvioinnin perusteet
Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan tuntitesteillä, loppukokeella ja viikoittain tarkastettavilla kotitehtävillä, joiden tekeminen vaikuttaa arvosanaan.
Tuntitesteistä pisteitä 6+6 ja loppukokeesta 18 pistettä. Varma läpipääsy on 40 % kokonaispistemäärästä.
Kotitehtäväpisteiden saamiseksi on osallistuttava kotitehtävien tarkistukseen (tarkemmat ohjeet Moodlessa).Opintojaksoon saattaa sisätyä myös ryhmässä tehtäviä osioita. Kokeen arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan sekä kurssikokeeseen osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois.
Kotitehtävillä saa lisäpisteitä oheisen taulukon mukaan:
yli 30% : 1
yli 50%: 2
yli 70% : 3
yli 90% : 4
Lopullinen arvosana määräytyy koepisteiden ja kotitehtäväpisteiden yhteismäärästä sekä osallistumisaktiivisuudesta.
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä- eikä tuntitestipisteet.
Arviointiasteikko
0-5
Opiskelumuodot ja opetusmenetelmät
Lähiopetus / etäopetus Zoomin kautta tilanteen mukaan, itsenäinen opiskelu, tuntiharjoitukset ja kotitehtävät, videomateriaalit, nettitehtävät, tuntitestit ja loppukoe.
Oppimateriaalit
Opettajan Moodlessa jakama materiaali.
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX II CAS -laskin.
Opiskelijan ajankäyttö ja kuormitus
Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-opetuksesta, jossa opettajaja mukana
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, nettitehtävät, opetusvideot)
-kokeesta
Opettajan pitämiä oppitunteja on n. 28 h
Sisällön jaksotus
-regressio
-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät
Toteutuksen valinnaiset suoritustavat
Ei ole
Harjoittelu- ja työelämäyhteistyö
Ei ole
Kansainvälisyys
Ei ole
Lisätietoja opiskelijoille
Opintojaksoon on Moodle-toteutus.
Arviointikriteerit - hylätty (0) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Opiskelija osallistuu säännöllisesti opetukseen ja suorittaa opintojakson tuntitestit ja loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.
Arviointikriteerit - tyydyttävä (1-2) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti, numeerisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä on vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit - hyvä (3-4) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit - kiitettävä (5) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut sekä käyttää oikeita matemaattisia merkintöjä. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Ilmoittautumisaika
02.12.2021 - 11.01.2022
Ajoitus
10.01.2022 - 26.02.2022
Laajuus
3 op
Toteutustapa
Lähiopetus
Yksikkö
TAMK Matematiikka ja fysiikka
Toimipiste
TAMK Pääkampus
Opetuskielet
- Suomi
Koulutus
- Autotekniikan tutkinto-ohjelma
Opettaja
- Sara Nortunen
Vastuuhenkilö
Sara Nortunen
Ryhmät
-
21AUTOBAutotekniikka 2021
Tavoitteet (OJ)
Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa
Sisältö (OJ)
Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.
Esitietovaatimukset (OJ)
Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.
Arviointikriteerit, tyydyttävä (1-2) (OJ)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit, hyvä (3-4) (OJ)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit, kiitettävä (5) (OJ)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Tenttien ja uusintatenttien ajankohdat
Opintojakson koe pidetään 22.2.2022 tuntiaikaan (alustava aika, voi tulla muutoksia).
Uusintaan osallistuminen edellyttää arvosanaa nolla.
1. uusinta alustavasti 30.3.2022 klo 16.00-19.00 luokassa x.
2. uusinta/korotus alustavasti 13.4.2022 klo 16.00-19.00 luokassa x.
Hyväksyttyä arvosanaa voi korottaa 2. uusintakokeessa.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Uusintakokeeseen ja korotukseen ilmoittaudutaan TAMKin tenttijärjestelmän kautta.
Arviointimenetelmät ja arvioinnin perusteet
Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan kokeilla ja viikoittain tarkastettavilla harjoitustehtävillä, joiden tekeminen vaikuttaa arvosanaan. Kotitehtäväpisteiden saamiseksi on osallistuttava kotitehtävien tarkistukseen (tarkemmat ohjeet Moodlessa). Opintojaksoon saattaa sisätyä myös ryhmässä tehtäviä osioita. Kokeen arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan, kotitehtävien aktiivista tekemistä (vähintään 30%) sekä kurssikokeeseen osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois.
Harjoitustehtävillä saa lisäpisteitä oheisen taulukon mukaan:
yli 30% : 1
yli 50%: 2
yli 70% : 3
yli 90% : 4
Harjoitustehtäväpisteet eivät vaikuta kurssin läpipääsyyn vaan niillä voi korottaa arvosanaa. Lopullinen arvosana määräytyy koepisteiden (viikkokokeet ja loppukoe) ja harjoitustehtäväpisteiden yhteismäärästä sekä osallistumisaktiivisuudesta. Harjoitustehtäväpisteitä ei huomioida enää uusinta- ja korotustenttien yhteydessä.
Arviointikriteeri -hylätty(0):
Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.
Arviointiasteikko
0-5
Opiskelumuodot ja opetusmenetelmät
lähiopetus
etäopetus
ryhmätyö
harjoitukset
viikkokokeet
loppukoe
uusintatentti
Oppimateriaalit
Opettajan jakama materiaali
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS-laskin.
Opiskelijan ajankäyttö ja kuormitus
Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-lähi/etäopetuksesta, jossa opettajaja mukana
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, STACK-tehtävät, opetusvideot)
-kokeesta
Opettajan pitämiä oppitunteja on n. 28 h
Sisällön jaksotus
-regressio
-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät
Lisätietoja opiskelijoille
Opetus alkaa ti 11.1. lukujärjestyksen mukaisesti.
Opintojaksoon on Moodle-toteutus. Oppitunnit pidetään kurssin alussa etäopetuksena (linkki Moodle-sivulla), jatkossa mahdollisesti lähiopetuksena.
Arviointikriteerit - hylätty (0) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.
Arviointikriteerit - tyydyttävä (1-2) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti, numeerisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä on vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit - hyvä (3-4) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit - kiitettävä (5) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut sekä käyttää oikeita matemaattisia merkintöjä. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Ilmoittautumisaika
12.11.2021 - 05.01.2022
Ajoitus
05.01.2022 - 27.02.2022
Laajuus
3 op
Toteutustapa
Lähiopetus
Yksikkö
TAMK Matematiikka ja fysiikka
Toimipiste
TAMK Pääkampus
Opetuskielet
- Suomi
Koulutus
- Laboratoriotekniikan tutkinto-ohjelma
Opettaja
- Ulla Miekkala
Vastuuhenkilö
Ulla Miekkala
Ryhmät
-
21LATEMMLaboratoriotekniikka 2021, monimuoto
Tavoitteet (OJ)
Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa
Sisältö (OJ)
Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.
Esitietovaatimukset (OJ)
Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.
Arviointikriteerit, tyydyttävä (1-2) (OJ)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit, hyvä (3-4) (OJ)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit, kiitettävä (5) (OJ)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Tenttien ja uusintatenttien ajankohdat
Opintojakson koe pidetään xx.2022 (alustava aika, voi tulla muutoksia erityisesti koronarajoitusten mukaan).
Uusintaan osallistuminen edellyttää arvosanaa nolla.
1. uusinta xx.2022 klo 17.00-20.00 (sovitaan kurssin aikana)
2. uusinta/ korotus xx.2022 klo 17.00-20.00 (sovitaan kurssin aikana)
Hyväksyttyä arvosanaa voi korottaa 2. uusintakokeessa.
Arviointimenetelmät ja arvioinnin perusteet
Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan kokeella, nettitehtävillä ja viikoittain tarkastettavilla harjoitustehtävillä, joiden tekeminen vaikuttaa arvosanaan. Kotitehtäväpisteiden saamiseksi on osallistuttava kotitehtävien tarkistukseen (tarkemmat ohjeet Moodlessa).Opintojaksoon saattaa sisältyä myös ryhmässä tehtäviä osioita. Kokeen arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan, nettitehtävien ja kotitehtävien tekoa sekä kurssikokeeseen osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois. Varma läpipääsyraja on 1/3 kurssikokeen ja nettitehtävien yhteenlasketusta maksimipistemäärästä.
Harjoitustehtävillä saa lisäpisteitä oheisen taulukon mukaan:
yli 30% : 1
yli 50%: 2
yli 70% : 3
yli 90% : 4
Harjoitustehtäväpisteet eivät vaikuta kurssin läpipääsyyn vaan niillä voi korottaa arvosanaa. Lopullinen arvosana määräytyy koepisteiden, nettitehtävien ja harjoitustehtäväpisteiden yhteismäärästä sekä osallistumisaktiivisuudesta. Harjoitustehtäväpisteitä ei huomioida enää uusinta- ja korotustenttien yhteydessä.
Arviointikriteeri -hylätty(0):
Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.
Arviointiasteikko
0-5
Opiskelumuodot ja opetusmenetelmät
Etäopetus zoomin avulla, itsenäinen opiskelu, tuntiharjoitukset ja kotitehtävät, videomateriaalit, nettitehtävät, tentti
Oppimateriaalit
Opettajan Moodlessa jakama materiaali (sähköinen PLUSSA-materiaali, videot, interaktiiviset tehtävät, pdf-materiaalit)
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Opiskelijan ajankäyttö ja kuormitus
Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-opetuksesta, jossa opettajaja mukana (Zoom-tunnit)
-itsenäisestä työskentelystä (mm. kotitehtävät, nettitehtävät, opetusvideot)
-kokeesta
Opettajan pitämiä kontaktitunteja on 24 h (koe mukaan lukien)
Sisällön jaksotus
-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät
Lisätietoja opiskelijoille
Opetus alkaa 26.11.2021
Opintojaksoon on Moodle-toteutus.
Arviointikriteerit - hylätty (0) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.
Arviointikriteerit - tyydyttävä (1-2) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti, numeerisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia.Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä on vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit - hyvä (3-4) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit - kiitettävä (5) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut sekä käyttää oikeita matemaattisia merkintöjä. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Ilmoittautumisaika
15.11.2021 - 03.01.2022
Ajoitus
03.01.2022 - 06.03.2022
Laajuus
3 op
Toteutustapa
Lähiopetus
Toimipiste
TAMK Pääkampus
Opetuskielet
- Suomi
Koulutus
- Tietotekniikan tutkinto-ohjelma
Opettaja
- Lasse Enäsuo
Vastuuhenkilö
Lasse Enäsuo
Ryhmät
-
21TIETOATietotekniikka
Tavoitteet (OJ)
Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa
Sisältö (OJ)
Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.
Esitietovaatimukset (OJ)
Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.
Arviointikriteerit, tyydyttävä (1-2) (OJ)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit, hyvä (3-4) (OJ)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit, kiitettävä (5) (OJ)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Tenttien ja uusintatenttien ajankohdat
Opintojakson koe pidetään alustavasti ti 22.2.2022 tuntiaikaan (alustava aika, voi tulla muutoksia).
Uusintaan osallistuminen edellyttää arvosanaa nolla.
1. uusinta alustavasti 30.3.2022 klo 16.00-19.00 luokassa x.
2. uusinta/korotus alustavasti 13.4.2022 klo 16.00-19.00 luokassa x.
Hyväksyttyä arvosanaa voi korottaa 2. uusintakokeessa.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Uusintakokeeseen ja korotukseen ilmoittaudutaan TAMKin tenttijärjestelmän kautta.
Arviointimenetelmät ja arvioinnin perusteet
Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan kokeilla ja viikoittain tarkastettavilla harjoitustehtävillä, joiden tekeminen vaikuttaa arvosanaan. Kotitehtäväpisteiden saamiseksi on palautettava kotitehtävät ohjeiden mukaisesti Moodleen (tarkemmat ohjeet Moodlessa). Opintojaksoon saattaa sisältyä myös ryhmässä tehtäviä osioita. Kokeen arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan, kotitehtävien aktiivista tekemistä sekä kurssikokeeseen osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois.
Lopullinen arvosana määräytyy koepisteiden (viikkokokeet ja loppukoe) ja harjoitustehtäväpisteiden yhteismäärästä sekä osallistumisaktiivisuudesta. Harjoitustehtäväpisteitä ja viikkokokeita ei huomioida enää uusinta- ja korotustenttien yhteydessä, vaan uusintakoe on erillinen arvioitava kokonaisuus.
Arviointikriteeri -hylätty(0):
Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.
Arviointiasteikko
0-5
Opiskelumuodot ja opetusmenetelmät
lähiopetus
etäopetus
ryhmätyö
harjoitukset
viikkokokeet
loppukoe
uusintatentti
Oppimateriaalit
Opettajan jakama materiaali
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS-laskin.
Opiskelijan ajankäyttö ja kuormitus
Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-lähi/etäopetuksesta, jossa opettajaja mukana
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, STACK-tehtävät, opetusvideot)
-kokeesta
Opettajan pitämiä oppitunteja on n. 28 h
Sisällön jaksotus
-regressio
-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät
Lisätietoja opiskelijoille
Opetus alkaa viikolla 2 lukujärjestyksen mukaisesti.
Opintojaksoon on Moodle-toteutus. Oppitunnit pidetään kurssin alussa etäopetuksena (linkki Moodle-sivulla), jatkossa mahdollisesti lähiopetuksena.
Arviointikriteerit - hylätty (0) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.
Arviointikriteerit - tyydyttävä (1-2) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti, numeerisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä on vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit - hyvä (3-4) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit - kiitettävä (5) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut sekä käyttää oikeita matemaattisia merkintöjä. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Ilmoittautumisaika
15.11.2021 - 09.01.2022
Ajoitus
03.01.2022 - 06.03.2022
Laajuus
3 op
Toteutustapa
Lähiopetus
Toimipiste
TAMK Pääkampus
Opetuskielet
- Suomi
Koulutus
- Tietotekniikan tutkinto-ohjelma
Opettaja
- Lasse Enäsuo
Vastuuhenkilö
Lasse Enäsuo
Ryhmät
-
21TIETOBTietotekniikka
Tavoitteet (OJ)
Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa
Sisältö (OJ)
Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.
Esitietovaatimukset (OJ)
Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.
Arviointikriteerit, tyydyttävä (1-2) (OJ)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit, hyvä (3-4) (OJ)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit, kiitettävä (5) (OJ)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Tenttien ja uusintatenttien ajankohdat
Opintojakson koe pidetään alustavasti ti 22.2.2022 tuntiaikaan (alustava aika, voi tulla muutoksia).
Uusintaan osallistuminen edellyttää arvosanaa nolla.
1. uusinta alustavasti 30.3.2022 klo 16.00-19.00 luokassa x.
2. uusinta/korotus alustavasti 13.4.2022 klo 16.00-19.00 luokassa x.
Hyväksyttyä arvosanaa voi korottaa 2. uusintakokeessa.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Uusintakokeeseen ja korotukseen ilmoittaudutaan TAMKin tenttijärjestelmän kautta.
Arviointimenetelmät ja arvioinnin perusteet
Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan kokeilla ja viikoittain tarkastettavilla harjoitustehtävillä, joiden tekeminen vaikuttaa arvosanaan. Kotitehtäväpisteiden saamiseksi on palautettava kotitehtävät ohjeiden mukaisesti Moodleen (tarkemmat ohjeet Moodlessa). Opintojaksoon saattaa sisältyä myös ryhmässä tehtäviä osioita. Kokeen arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan, kotitehtävien aktiivista tekemistä sekä kurssikokeeseen osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois.
Lopullinen arvosana määräytyy koepisteiden (viikkokokeet ja loppukoe) ja harjoitustehtäväpisteiden yhteismäärästä sekä osallistumisaktiivisuudesta. Harjoitustehtäväpisteitä ja viikkokokeita ei huomioida enää uusinta- ja korotustenttien yhteydessä, vaan uusintakoe on erillinen arvioitava kokonaisuus.
Arviointikriteeri -hylätty(0):
Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.
Arviointiasteikko
0-5
Opiskelumuodot ja opetusmenetelmät
lähiopetus
etäopetus
ryhmätyö
harjoitukset
viikkokokeet
loppukoe
uusintatentti
Oppimateriaalit
Opettajan jakama materiaali
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS-laskin.
Opiskelijan ajankäyttö ja kuormitus
Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-lähi/etäopetuksesta, jossa opettajaja mukana
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, STACK-tehtävät, opetusvideot)
-kokeesta
Opettajan pitämiä oppitunteja on n. 28 h
Sisällön jaksotus
-regressio
-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät
Lisätietoja opiskelijoille
Opetus alkaa viikolla 2 lukujärjestyksen mukaisesti.
Opintojaksoon on Moodle-toteutus. Oppitunnit pidetään kurssin alussa etäopetuksena (linkki Moodle-sivulla), jatkossa mahdollisesti lähiopetuksena.
Arviointikriteerit - hylätty (0) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.
Arviointikriteerit - tyydyttävä (1-2) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti, numeerisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä on vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit - hyvä (3-4) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit - kiitettävä (5) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut sekä käyttää oikeita matemaattisia merkintöjä. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Ilmoittautumisaika
02.12.2021 - 10.01.2022
Ajoitus
01.01.2022 - 06.03.2022
Laajuus
3 op
Toteutustapa
Lähiopetus
Toimipiste
TAMK Pääkampus
Opetuskielet
- Suomi
Paikat
0 - 48
Koulutus
- Sähkö- ja automaatiotekniikan tutkinto-ohjelma
Opettaja
- Ulla Miekkala
Vastuuhenkilö
Ulla Miekkala
Ryhmät
-
21I231BSähkö- ja automaatiotekniikka
Tavoitteet (OJ)
Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa
Sisältö (OJ)
Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.
Esitietovaatimukset (OJ)
Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.
Arviointikriteerit, tyydyttävä (1-2) (OJ)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit, hyvä (3-4) (OJ)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit, kiitettävä (5) (OJ)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Tenttien ja uusintatenttien ajankohdat
Opintojakson koe pidetään 2x.2.2022 tuntiaikaan (alustava aika, voi tulla muutoksia).
Uusintaan osallistuminen edlyttää arvosanaa nolla.
1. uusinta 30.3.2022 klo 17.00-20.00 (paikka ilmoitetaan ennen tenttiä)
2. uusinta/ korotus 13.4.2022 klo 17.00-20.00 (paikka ilmoitetaan ennen tenttiä)
Hyväksyttyä arvosanaa voi korottaa 2. uusintakokeessa.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Uusintakokeeseen ja korotukseen ilmoittaudutaan TAMKin tenttijärjestelmän kautta.
Arviointimenetelmät ja arvioinnin perusteet
Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan kokeilla, nettitehtävillä ja viikoittain tarkastettavilla harjoitustehtävillä, joiden tekeminen vaikuttaa arvosanaan. Kotitehtäväpisteiden saamiseksi on osallistuttava kotitehtävien tarkistukseen (tarkemmat ohjeet Moodlessa).Opintojaksoon saattaa sisältyä myös ryhmässä tehtäviä osioita. Kokeiden arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan, nettitehtävien ja kotitehtävien tekoa sekä kurssikokeisiin osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois. Varma läpipääsyraja on 1/3 kurssikokeen ja nettitehtävien yhteenlasketusta maksimipistemäärästä.
Harjoitustehtävillä saa lisäpisteitä oheisen taulukon mukaan:
yli 30% : 1
yli 50%: 2
yli 70% : 3
yli 90% : 4
Harjoitustehtäväpisteet eivät vaikuta kurssin läpipääsyyn vaan niillä voi korottaa arvosanaa. Lopullinen arvosana määräytyy koepisteiden, nettitehtävien ja harjoitustehtäväpisteiden yhteismäärästä sekä osallistumisaktiivisuudesta. Harjoitustehtäväpisteitä ei huomioida enää uusinta- ja korotustenttien yhteydessä.
Arviointikriteeri -hylätty(0):
Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson kokeisiin, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.
Arviointiasteikko
0-5
Opiskelumuodot ja opetusmenetelmät
Lähiopetus (aloitus etäopetuksena zoomin avulla), itsenäinen opiskelu, tuntiharjoitukset ja kotitehtävät, videomateriaalit, nettitehtävät, tentti
Oppimateriaalit
Opettajan Moodlessa jakama materiaali (sähköinen PLUSSA-materiaali, videot, interaktiiviset tehtävät, pdf-materiaalit, STACK-tehtävät)
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS/ TI-nspire CX II CAS -laskin.
Opiskelijan ajankäyttö ja kuormitus
Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-opetuksesta, jossa opettajaja mukana (Zoom-tunnit)
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, nettitehtävät, opetusvideot)
-kokeesta
Opettajan pitämiä lähitunteja on n. 30 h
Sisällön jaksotus
-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät
Lisätietoja opiskelijoille
Opetus alkaa viikolla 2 lukujärjestyksen mukaisesti.
Opintojaksoon on Moodle-toteutus.
Arviointikriteerit - hylätty (0) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson kokeisiin, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.
Arviointikriteerit - tyydyttävä (1-2) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti, numeerisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia.Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä on vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit - hyvä (3-4) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit - kiitettävä (5) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut sekä käyttää oikeita matemaattisia merkintöjä. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Ilmoittautumisaika
02.12.2021 - 15.02.2022
Ajoitus
01.01.2022 - 06.03.2022
Laajuus
3 op
Toteutustapa
Lähiopetus
Yksikkö
Rakennustekniikka
Toimipiste
TAMK Pääkampus
Opetuskielet
- Suomi
Koulutus
- Rakennustekniikan tutkinto-ohjelma
Opettaja
- Kirsi-Maria Rinneheimo
Vastuuhenkilö
Kirsi-Maria Rinneheimo
Ryhmät
-
21RTBRakennustekniikka
Tavoitteet (OJ)
Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa
Sisältö (OJ)
Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.
Esitietovaatimukset (OJ)
Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.
Arviointikriteerit, tyydyttävä (1-2) (OJ)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit, hyvä (3-4) (OJ)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit, kiitettävä (5) (OJ)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Tenttien ja uusintatenttien ajankohdat
Opintojakso suoritetaan kahdella välikokeella, joiden ajat ilmoitetaan kurssin aikana.
Uusintakokeet:
1. uusintakoe 30.3.2022 klo 17-20 ( paikka tarkentuu myöhemmin)
2. uusintakoe/ korotus 13.4.2022 klo 17-20 (paikka tarkentuu myöhemmin)
Uusinnat ja korotukset ovat vain ja ainoastaan tässä ilmoitettuna aikana, ei siis myöhemmin esim. seuraavana vuonna.
Uusintakokeeseen ja korotukseen ilmoittaudutaan opettajan ilmoittamalla tavalla.
Uusintaan osallistuminen edellyttää arvosanaa 0.
Yleiseti kokeesta:
Sairastapauksissa vaaditaan lääkärintodistus.
Poissaolo kokeesta vastaa hylättyä suoritusta.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Arviointimenetelmät ja arvioinnin perusteet
Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan välikokeilla, nettitehtävillä ja viikoittain tarkastettavilla harjoitustehtävillä,
Arviointiin vaikuttavat nettitehtävät 15 %, kotitehtävät 10 % ja välikokeet 75 % . Kokeiden arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan, nettitehtävien ja kotitehtävien tekoa sekä välikokeisiin osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois. Arvosanan 1 saa pistemäärällä, joka on 30 % kurssin eri arviointimuotojen yhteenlasketusta maksimipistemäärästä.
Harjoitustehtävillä saa lisäpisteitä oheisen taulukon mukaan:
yli 30% : 1
yli 50% : 2
yli 70% : 3
yli 90% : 4
Kotitehtäväpisteiden saamiseksi on osallistuttava kotitehtävien tarkistukseen (tarkemmat ohjeet Moodlessa).
Uusinta- ja korotus:
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä-, nettitehtävä- eikä välikoepisteet.
Arviointikriteeri - hylätty (0)
Opiskelija osallistuu säännöllisesti opetukseen ja sen työmuotoihin, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Mikäli edellä mainitut kriteerit eivät täyty, niin opiskelija poistetaan toteutukselta. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.
Arviointiasteikko
0-5
Opiskelumuodot ja opetusmenetelmät
Lähiopetus/ etäopetus zoomin kautta, itsenäinen opiskelu, tuntiharjoitukset ja kotitehtävät, videomateriaalit, nettitehtävät (STACK-tehtävät), välikokeet, tentti
Oppimateriaalit
Opettajan Moodlessa jakama materiaali (sähköinen PLUSSA-materiaali, videot, interaktiiviset tehtävät, pdf-materiaalit)
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS/ TI-nspire CX II CAS -laskin.
Opiskelijan ajankäyttö ja kuormitus
Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-opetuksesta, jossa opettajaja mukana
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, nettitehtävät, opetusvideot)
-kokeista
Opettajan pitämiä lähitunteja on n. 30 h
Sisällön jaksotus
-regressio
-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät
Lisätietoja opiskelijoille
Opetus alkaa viikolla 2 lukujärjestyksen mukaisesti.
Opintojaksoon on Moodle-toteutus. Opettaja lähettää Moodle-avaimen kurssille ilmoittautuneille ennen kurssia alkua sähköpostilla .
Arviointikriteerit - hylätty (0) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.
Arviointikriteerit - tyydyttävä (1-2) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti, numeerisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia.Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä on vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit - hyvä (3-4) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit - kiitettävä (5) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut sekä käyttää oikeita matemaattisia merkintöjä. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Ilmoittautumisaika
01.12.2021 - 06.01.2022
Ajoitus
01.01.2022 - 27.02.2022
Laajuus
3 op
Toteutustapa
Lähiopetus
Yksikkö
Talotekniikka
Toimipiste
TAMK Pääkampus
Opetuskielet
- Suomi
Paikat
1 - 45
Koulutus
- Talotekniikan tutkinto-ohjelma, Sähköinen talotekniikka
Opettaja
- Pia Ruokonen-Kaukolinna
Vastuuhenkilö
Pia Ruokonen-Kaukolinna
Ryhmät
-
21I254Sähköinen talotekniikka
Tavoitteet (OJ)
Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa
Sisältö (OJ)
Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.
Esitietovaatimukset (OJ)
Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.
Arviointikriteerit, tyydyttävä (1-2) (OJ)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit, hyvä (3-4) (OJ)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit, kiitettävä (5) (OJ)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Tenttien ja uusintatenttien ajankohdat
Opintojakso suoritetaan kahdella välikokeella, joiden ajat ilmoitetaan kurssin aikana. Välikokeita/viikkokokeita ei voi uusia eikä korottaa. Koko kurssin uusintakoe järjestetään seuraavasti:
Uusintakokeet:
1. uusintakoe 30.3.2022 klo 17-20 ( paikka tarkentuu myöhemmin)
2. uusintakoe/ korotus 13.4.2022 klo 17-20 (paikka tarkentuu myöhemmin)
Uusinnat ja korotukset ovat vain ja ainoastaan tässä ilmoitettuna aikana, ei siis myöhemmin esim. seuraavana vuonna.
Uusintakokeeseen ja korotukseen ilmoittaudutaan opettajan ilmoittamalla tavalla.
Uusintaan osallistuminen edellyttää arvosanaa 0.
Yleiseti kokeesta:
Sairastapauksissa vaaditaan lääkärintodistus.
Poissaolo kokeesta vastaa hylättyä suoritusta.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Arviointimenetelmät ja arvioinnin perusteet
Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan välikokeilla, nettitehtävillä ja viikoittain tarkastettavilla harjoitustehtävillä,
Arvosteluun vaikuttavat nettitehtävät 15 %, kotitehtävät 10 % ja välikokeet 75 % . Kokeiden arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan, nettitehtävien ja kotitehtävien tekoa sekä välikokeisiin osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois. Arvosanan 1 saa pistemäärällä, joka on 30 % kurssin eri arviointimuotojen yhteenlasketusta maksimipistemäärästä.
Harjoitustehtävillä saa lisäpisteitä oheisen taulukon mukaan:
yli 30% : 1
yli 50% : 2
yli 70% : 3
yli 90% : 4
Kotitehtäväpisteiden saamiseksi on osallistuttava kotitehtävien tarkistukseen (tarkemmat ohjeet Moodlessa).
Uusinta- ja korotus:
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä-, nettitehtävä- eikä välikoepisteet.
Arviointikriteeri - hylätty (0)
Opiskelija osallistuu säännöllisesti opetukseen ja sen työmuotoihin, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Mikäli edellä mainitut kriteerit eivät täyty, niin opiskelija poistetaan toteutukselta. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.
Arviointiasteikko
0-5
Opiskelumuodot ja opetusmenetelmät
Lähiopetus/ etäopetus zoomin kautta, itsenäinen opiskelu, tuntiharjoitukset ja kotitehtävät, videomateriaalit, nettitehtävät (STACK-tehtävät), viikkokokeet, tentti
Oppimateriaalit
Opettajan Moodlessa jakama materiaali (pdf-materiaalit, videot, interaktiiviset tehtävät)
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS/ TI-nspire CX II CAS -laskin.
Opiskelijan ajankäyttö ja kuormitus
Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-opetuksesta, jossa opettajaja mukana
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, nettitehtävät, opetusvideot)
-kokeista
Opettajan pitämiä lähitunteja on n. 30 h
Sisällön jaksotus
-regressio
-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät
Lisätietoja opiskelijoille
Opetus alkaa viikolla 2 lukujärjestyksen mukaisesti.
Opintojaksoon on Moodle-toteutus. Opettaja lähettää Moodle-avaimen kurssille ilmoittautuneille ennen kurssia alkua sähköpostilla .
Arviointikriteerit - hylätty (0) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.
Arviointikriteerit - tyydyttävä (1-2) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti, numeerisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia.Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä on vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit - hyvä (3-4) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit - kiitettävä (5) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut sekä käyttää oikeita matemaattisia merkintöjä. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Ilmoittautumisaika
02.12.2021 - 06.01.2022
Ajoitus
01.01.2022 - 06.03.2022
Laajuus
3 op
Toteutustapa
Lähiopetus
Yksikkö
TAMK Matematiikka ja fysiikka
Toimipiste
TAMK Pääkampus
Opetuskielet
- Suomi
Koulutus
- Autotekniikan tutkinto-ohjelma
Opettaja
- Pia Ruokonen-Kaukolinna
Vastuuhenkilö
Pia Ruokonen-Kaukolinna
Ryhmät
-
21AUTOAAutotekniikka 2021
Tavoitteet (OJ)
Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa
Sisältö (OJ)
Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.
Esitietovaatimukset (OJ)
Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.
Arviointikriteerit, tyydyttävä (1-2) (OJ)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit, hyvä (3-4) (OJ)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit, kiitettävä (5) (OJ)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Tenttien ja uusintatenttien ajankohdat
Opintojakso suoritetaan kahdella välikokeella, joiden ajat ilmoitetaan kurssin aikana. Välikokeita/viikkokokeita ei voi uusia eikä korottaa. Koko kurssin uusintakoe järjestetään seuraavasti:
Uusintakokeet:
1. uusintakoe 30.3.2022 klo 17-20 ( paikka tarkentuu myöhemmin)
2. uusintakoe/ korotus 13.4.2022 klo 17-20 (paikka tarkentuu myöhemmin)
Uusinnat ja korotukset ovat vain ja ainoastaan tässä ilmoitettuna aikana, ei siis myöhemmin esim. seuraavana vuonna.
Uusintakokeeseen ja korotukseen ilmoittaudutaan opettajan ilmoittamalla tavalla.
Uusintaan osallistuminen edellyttää arvosanaa 0.
Yleiseti kokeesta:
Sairastapauksissa vaaditaan lääkärintodistus.
Poissaolo kokeesta vastaa hylättyä suoritusta.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Arviointimenetelmät ja arvioinnin perusteet
Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan välikokeilla, nettitehtävillä ja viikoittain tarkastettavilla harjoitustehtävillä,
Arvosteluun vaikuttavat nettitehtävät 15 %, kotitehtävät 10 % ja välikokeet 75 % . Kokeiden arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan, nettitehtävien ja kotitehtävien tekoa sekä välikokeisiin osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois. Arvosanan 1 saa pistemäärällä, joka on 30 % kurssin eri arviointimuotojen yhteenlasketusta maksimipistemäärästä.
Harjoitustehtävillä saa lisäpisteitä oheisen taulukon mukaan:
yli 30% : 1
yli 50% : 2
yli 70% : 3
yli 90% : 4
Kotitehtäväpisteiden saamiseksi on osallistuttava kotitehtävien tarkistukseen (tarkemmat ohjeet Moodlessa).
Uusinta- ja korotus:
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä-, nettitehtävä- eikä välikoepisteet.
Arviointikriteeri - hylätty (0)
Opiskelija osallistuu säännöllisesti opetukseen ja sen työmuotoihin, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Mikäli edellä mainitut kriteerit eivät täyty, niin opiskelija poistetaan toteutukselta. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.
Arviointiasteikko
0-5
Opiskelumuodot ja opetusmenetelmät
Lähiopetus/ etäopetus zoomin kautta, itsenäinen opiskelu, tuntiharjoitukset ja kotitehtävät, videomateriaalit, nettitehtävät (STACK-tehtävät), viikkokokeet, tentti
Oppimateriaalit
Opettajan Moodlessa jakama materiaali (pdf-materiaalit, videot, interaktiiviset tehtävät)
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS/ TI-nspire CX II CAS -laskin.
Opiskelijan ajankäyttö ja kuormitus
Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-opetuksesta, jossa opettajaja mukana
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, nettitehtävät, opetusvideot)
-kokeista
Opettajan pitämiä lähitunteja on n. 30 h
Sisällön jaksotus
-regressio
-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät
Lisätietoja opiskelijoille
Opetus alkaa viikolla 2 lukujärjestyksen mukaisesti.
Opintojaksoon on Moodle-toteutus. Opettaja lähettää Moodle-avaimen kurssille ilmoittautuneille ennen kurssia alkua sähköpostilla .
Arviointikriteerit - hylätty (0) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.
Arviointikriteerit - tyydyttävä (1-2) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti, numeerisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia.Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä on vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit - hyvä (3-4) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit - kiitettävä (5) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut sekä käyttää oikeita matemaattisia merkintöjä. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.