Siirry suoraan sisältöön

DifferentiaalilaskentaLaajuus (3 op)

Tunnus: 5N00EG74

Laajuus

3 op

Osaamistavoitteet

Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa

Sisältö

Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.

Esitietovaatimukset

Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.

Arviointikriteerit, tyydyttävä (1-2)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit, hyvä (3-4)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit, kiitettävä (5)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Ilmoittautumisaika

01.06.2024 - 31.08.2024

Ajoitus

24.08.2024 - 14.12.2024

Laajuus

3 op

Toteutustapa

Lähiopetus

Yksikkö

TAMK Matematiikka ja fysiikka

Toimipiste

TAMK Pääkampus

Opetuskielet
  • Suomi
Paikat

0 - 40

Koulutus
  • Sähkö- ja automaatiotekniikan tutkinto-ohjelma
Opettaja
  • Jukka Suominen
Vastuuhenkilö

Jukka Suominen

Ryhmät
  • 24AI231
    Sähkö- ja automaatiotekniikka, monimuotototeutus

Tavoitteet (OJ)

Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa

Sisältö (OJ)

Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.

Esitietovaatimukset (OJ)

Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.

Arviointikriteerit, tyydyttävä (1-2) (OJ)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit, hyvä (3-4) (OJ)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit, kiitettävä (5) (OJ)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Aika ja paikka

Ajankohdat ja paikat on ilmoitettu TUNIMoodlessa.

Tenttien ja uusintatenttien ajankohdat

Opintojakson koe pidetään 26.10.2024 klo 08.15-11.00 luokassa B2-25.
1. uusinta / korotus, 15.11.2024 klo 17.00-20.00 luokassa B2-25.
2. uusinta / korotus, 29.11.2024 klo 14.15-17.00 luokassa B2-25.

Ilmoittautuminen uusintakokeisiin viimeistään 3 päivää ennen koetta sähköpostitse osoitteeseen jukka.suominen@tuni.fi

Hyväksyttyä arvosanaa voi yrittää korottaa vain kerran.

Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.

Arviointimenetelmät ja arvioinnin perusteet

Opintojakso arvioidaan asteikolla 0-5.

Kotitehtävistä on mahdollista saada 1 piste / palautuskerta, yhteensä 6 pistettä. Kokeen maksimipistemäärä 34 pistettä. Yhteispistemäärä on täten 40 pistettä.

Arvosana määräytyy tehtyjen kotitehtävien ja kokeen yhteispistemäärän perusteella seuraavasti:

0 pistettä, arvosana 0
10 pistettä, arvosana 1
16 pistettä, arvosana 2
22 pistettä, arvosana 3
28 pistettä, arvosana 4
34 pistettä, arvosana 5

Arviointiasteikko

0-5

Opiskelumuodot ja opetusmenetelmät

- lähiopetus ja itsenäinen opiskelu
- tuntitehtävät, kotitehtävät
- koe

Oppimateriaalit

Opettajan jakama materiaali Moodlessa.
Kaavasto: Tekniikan kaavasto, Tammertekniikka.
Suositellaan hankittavaksi TI-nspire CX CAS-laskin.

Opiskelijan ajankäyttö ja kuormitus

Opiskelijan keskimääräinen työmäärä on 81 h, joka koostuu:
-lähiopetuksesta
-itsenäisestä työskentelystä (mm. kotitehtävät, opetusvideot)
-kokeesta
Opettajan pitämiä lähitunteja koe mukaan lukien on 27 h.

Sisällön jaksotus

- erotusosamäärä ja derivaatta
- derivaatta funktion ominaisuuksien kuvaajana
- muutosnopeustulkinta ja graafinen tulkinta
- derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
- derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät
- regressio ja pienimmän neliösumman menetelmä

Toteutuksen valinnaiset suoritustavat

Ei ole

Harjoittelu- ja työelämäyhteistyö

Ei ole.

Kansainvälisyys

-

Ilmoittautumisaika

07.06.2024 - 30.08.2024

Ajoitus

01.08.2024 - 13.12.2024

Laajuus

3 op

Toteutustapa

Lähiopetus

Yksikkö

TAMK Matematiikka ja fysiikka

Toimipiste

TAMK Pääkampus

Opetuskielet
  • Suomi
Koulutus
  • Konetekniikan tutkinto-ohjelma
Opettaja
  • Pia Ruokonen-Kaukolinna
Vastuuhenkilö

Pia Ruokonen-Kaukolinna

Ryhmät
  • 24AI112
    Konetekniikka 2024, monimuoto

Tavoitteet (OJ)

Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa

Sisältö (OJ)

Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.

Esitietovaatimukset (OJ)

Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.

Arviointikriteerit, tyydyttävä (1-2) (OJ)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit, hyvä (3-4) (OJ)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit, kiitettävä (5) (OJ)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Tenttien ja uusintatenttien ajankohdat

Opintojakso suoritetaan tehtävillä ja yhdellä kurssikokeella:

Kurssikoe 25.10. (aika ja paikka löytyy lukujärjestyksestä)

Opintojakson päätyttyä järjestetään kaksi uusintatenttiä
1. uusintakoe 15.11.2024 klo 13-16 (paikka ilmoitettu Moodlessa)
2. uusintakoe/korotus 13.12.2024 klo 13-16 (paikka ilmoitettu Moodlessa)

Uusinnat ja korotukset ovat vain ja ainoastaan tässä ilmoitettuna aikana, ei siis myöhemmin esim. seuraavana vuonna.
Uusintakokeeseen ja korotukseen ilmoittaudutaan Pakin kautta. Ilmoittautuminen päättyy aina koetta edeltävän viikon lauantaina.
Uusintaan osallistuminen edellyttää arvosanaa 0.

Yleiseti kokeesta:
Sairastapauksissa vaaditaan lääkärintodistus.
Poissaolo kokeesta vastaa hylättyä suoritusta.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.

Arviointimenetelmät ja arvioinnin perusteet

Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan kokeella, nettitehtävillä ja viikoittain tarkastettavilla harjoitustehtävillä,

Arvosteluun vaikuttavat nettitehtävät (6 p) , kotitehtävät (6 p) ja koe (28 p). Kokeiden arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää osallistumista opintojakson työmuotoihin (lähiopetus, nettitehtävien ja kotitehtävien teko sekä osallistuminen kokeeseen). Arvosanan 1 saa 12 pisteellä kurssin eri arviointimuotojen yhteenlasketusta maksimipistemäärästä, kuitenkin siten, että pisteistä 6 p on tultava kokeella.

Opintojakson aiheiden opettelussa ja kertauksessa on sallittua hyödyntää tekoälyä. Tehtävien ratkaisut pitää kuitenkin esittää toteutuksella opetettavin käsittein, merkinnöin ja menetelmin ja ratkaisun periaatteet ja välivaiheet on osattava selittää.

Uusinta- ja korotus:
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä-, nettitehtävä- eikä aiemmat koepisteet.

Arviointikriteeri - hylätty (0)
Opiskelija osallistuu säännöllisesti opetukseen ja sen työmuotoihin, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Mikäli edellä mainitut kriteerit eivät täyty, niin opiskelija poistetaan toteutukselta. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.

Arviointiasteikko

0-5

Opiskelumuodot ja opetusmenetelmät

Lähiopetus/etäopetus, itsenäinen opiskelu, videomateriaalit, tuntiharjoitukset ja kotitehtävät, nettitehtävät (STACK-tehtävät), kokeet.
Zoom-linkki löytyy kurssin Moodlesta.

Oppimateriaalit

Opettajan Moodlessa jakama materiaali (pdf-materiaalit, videot, interaktiiviset tehtävät)
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS/ TI-nspire CX II CAS -laskin.

Opiskelijan ajankäyttö ja kuormitus

Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
- opetuksesta, jossa opettaja mukana
- kotitehtävistä, nettitehtävistä ja mahdollisista ryhmätöistä (opettaja ei ole mukana),
- itsenäisestä työskentelystä
- kokeista
Opettajan pitämiä tunteja on n. 24 h.

Sisällön jaksotus

Sisällön jaksotus on suuntaa antava. Osa opsissa mainituista kokonaisuuksista on tarkoitus suorittaa itsenäisenä opiskeluna ja/tai ryhmätöinä.

-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät

Toteutuksen valinnaiset suoritustavat

Ei ole.

Harjoittelu- ja työelämäyhteistyö

Ei ole.

Kansainvälisyys

Ei ole.

Lisätietoja opiskelijoille

Opetus alkaa lukujärjestyksen mukaisesti.
Opintojaksoon tulee Moodle-toteutus. Toteutus ei näy automaattisesti, vaan se täytyy hakea kurssitunnuksella. Opettaja lähettää ilmoittautuneille ennen kurssin alkua Moodle-avaimen sähköpostilla. Etäopetuksen Zoom-linkki löytyy Moodlesta.

Huom!
Jo ensimmäisille tunneille saattaa tulla ennakko-opiskeltavaa, joten huolehdi, että ilmoittaudut kurssille hyvissä ajoin, jotta saat tiedon näistä mahdollisista tehtävistä.

Ilmoittautumisaika

03.08.2024 - 02.09.2024

Ajoitus

02.09.2024 - 20.10.2024

Laajuus

3 op

Toteutustapa

Lähiopetus

Yksikkö

TAMK Matematiikka ja fysiikka

Toimipiste

TAMK Pääkampus

Opetuskielet
  • Suomi
Koulutus
  • Biotuotetekniikan tutkinto-ohjelma
Opettaja
  • Kirsi-Maria Rinneheimo
Vastuuhenkilö

Jukka Suominen

Ryhmät
  • 24BIOTA
    Biotuotetekniikan tutkinto-ohjelma, kevät 2024

Tavoitteet (OJ)

Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa

Sisältö (OJ)

Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.

Esitietovaatimukset (OJ)

Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.

Arviointikriteerit, tyydyttävä (1-2) (OJ)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit, hyvä (3-4) (OJ)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit, kiitettävä (5) (OJ)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Aika ja paikka

Toteutus kestää 3. periodin ja opetus viikoittain.

Tenttien ja uusintatenttien ajankohdat

Opintojakson välikokeet pidetään
1. välikoe xx.xx.2024
2. välikoe xx.xx.2024

Opintojakson päätyttyä järjestetään kaksi uusintatenttiä:
1. uusintatentti 15.11.2024 klo 13- 16 (paikka ilmoitettu Moodlessa)
2. uusintatentti/korotus 13.12.2024 klo 13 - 16 (paikka ilmoitettu Moodlessa)

Uusinnat ja korotukset ovat vain ja ainoastaan tässä ilmoitettuna aikana, ei siis myöhemmin esim. seuraavana vuonna.
Uusintatenttiin ja korotukseen ilmoittaudutaan Pakin kautta..
Uusintaan osallistuminen edellyttää arvosanaa 0.

Yleiseti kokeesta:
Sairastapauksissa vaaditaan lääkärintodistus.
Poissaolo kokeesta vastaa hylättyä suoritusta.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.

Arviointimenetelmät ja arvioinnin perusteet

Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan kahdella välikokeella, nettitehtävillä ja viikoittain tarkastettavilla harjoitustehtävillä. Molempiin välikokeisiin pitää osallistua.

Arvosteluun vaikuttavat nettitehtävät 15 %, välikokeet 75 % ja kotitehtävät 10 %. Kokeiden arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan, nettitehtävien ja kotitehtävien tekoa sekä molempiin välikokeisiin osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois. Arvosanan 1 saa pistemäärällä, joka on 30 % kurssin eri arviointimuotojen yhteenlasketusta maksimipistemäärästä, kuitenkin siten, että vähintään 15 % pisteistä on kokeista.

Uusinta- ja korotus:
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä-, nettitehtävä- eikä välikoepisteet.

Mikäli opiskelija hyödyntää tekoälyä tehtävien ratkaisemisessa, niin ratkaisut pitää kuitenkin esittää toteutuksella opetettavin käsittein, merkinnöin ja menetelmin ja välivaiheet on osattava selittää.

Arviointiasteikko

0-5

Opiskelumuodot ja opetusmenetelmät

Lähiopetus, itsenäinen opiskelu, tuntiharjoitukset ja kotitehtävät, videomateriaalit, nettitehtävät, välikokeet.

Oppimateriaalit

Opettajan Moodlessa jakama materiaali (opetusmonisteet, videot, STACK-tehtävät)
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS/ TI-nspire CX II CAS -laskin.

Opiskelijan ajankäyttö ja kuormitus

Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
- opetuksesta, jossa opettaja mukana
- ryhmätöistä (opettaja ei ole mukana)
- itsenäisestä työskentelystä (mm. kotitehtävät, nettitehtävät, opetusvideot)
- kokeista
Opettajan pitämiä lähitunteja on n. 27 h. Lisäksi opiskelijalla on mahdollisuus osallistua matematiikan tukipajaan maanantaisin klo 14 - 16.

Sisällön jaksotus

-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät

Toteutuksen valinnaiset suoritustavat

Ei ole.

Harjoittelu- ja työelämäyhteistyö

Ei ole.

Kansainvälisyys

Ei ole.

Lisätietoja opiskelijoille

Opetus alkaa viikolla 36 lukujärjestyksen mukaisesti.
Opintojaksoon on Moodle-toteutus.

Ilmoittautumisaika

22.11.2023 - 13.01.2024

Ajoitus

15.01.2024 - 20.02.2024

Laajuus

3 op

Toteutustapa

Lähiopetus

Yksikkö

TAMK Matematiikka ja fysiikka

Toimipiste

TAMK Pääkampus

Opetuskielet
  • Suomi
Koulutus
  • Laboratoriotekniikan tutkinto-ohjelma
Opettaja
  • Jukka Suominen
Vastuuhenkilö

Jukka Suominen

Ryhmät
  • 23LATE
    Laboratoriotekniikka 2023

Tavoitteet (OJ)

Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa

Sisältö (OJ)

Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.

Esitietovaatimukset (OJ)

Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.

Arviointikriteerit, tyydyttävä (1-2) (OJ)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit, hyvä (3-4) (OJ)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit, kiitettävä (5) (OJ)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Aika ja paikka

Ajankohdat ja paikat on ilmoitettu TUNIMoodlessa.

Tenttien ja uusintatenttien ajankohdat

Opintojakson koe pidetään 20.02.2024 klo 08.15-11.00 juhlasalissa D1-04.
1. uusinta / korotus 27.03.2024 klo 17.00-20.00 luokissa B4-18 ja B4-27.
2. uusinta / korotus 17.04.2024 klo 17.00-20.00 luokissa B4-18 ja B4-27.

Ilmoittautuminen uusintakokeisiin viimeistään koetta edeltävänä sunnuntaina sähköpostitse.
Hyväksyttyä arvosanaa voi yrittää korottaa vain kerran.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.

Arviointimenetelmät ja arvioinnin perusteet

Opintojakso arvioidaan asteikolla 0-5.

Kotitehtävistä on mahdollista saada 1 piste / palautuskerta, yhteensä 7 pistettä. Kokeen maksimipistemäärä 43 pistettä. Yhteispistemäärä on täten 50 pistettä.

Arvosana määräytyy kotitehtävien ja kokeen yhteispistemäärän perusteella seuraavasti:

0 pistettä, arvosana 0
12,5 pistettä, arvosana 1
20 pistettä, arvosana 2
27,5 pistettä, arvosana 3
35 pistettä, arvosana 4
42,5 pistettä, arvosana 5

Arviointiasteikko

0-5

Opiskelumuodot ja opetusmenetelmät

- lähi/etäopetus ja itsenäinen opiskelu
- tuntitehtävät, kotitehtävät
- koe

Oppimateriaalit

Opettajan jakama materiaali Moodlessa
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS-laskin.

Opiskelijan ajankäyttö ja kuormitus

Opiskelijan keskimääräinen työmäärä on 81 h, joka koostuu:
-lähiopetuksesta
-itsenäisestä työskentelystä (mm. kotitehtävät, opetusvideot)
-kokeesta
Opettajan pitämiä lähitunteja koe mukaan lukien on 30 h.

Sisällön jaksotus

-erotusosamäärä ja derivaatta
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät
-regressio

Toteutuksen valinnaiset suoritustavat

-

Harjoittelu- ja työelämäyhteistyö

-

Kansainvälisyys

-

Lisätietoja opiskelijoille

Opetus alkaa 15.01.2024 lukujärjestyksen mukaisesti.

Ilmoittautumisaika

22.11.2023 - 13.01.2024

Ajoitus

15.01.2024 - 20.02.2024

Laajuus

3 op

Toteutustapa

Lähiopetus

Yksikkö

Rakennettu ympäristö ja biotalous

Toimipiste

TAMK Pääkampus

Opetuskielet
  • Suomi
Koulutus
  • Biotuotetekniikan tutkinto-ohjelma
Opettaja
  • Jukka Suominen
Vastuuhenkilö

Jukka Suominen

Ryhmät
  • 23BIOTB
    Biotuotetekniikan tutkinto-ohjelma, syksy 2023

Tavoitteet (OJ)

Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa

Sisältö (OJ)

Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.

Esitietovaatimukset (OJ)

Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.

Arviointikriteerit, tyydyttävä (1-2) (OJ)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit, hyvä (3-4) (OJ)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit, kiitettävä (5) (OJ)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Aika ja paikka

Ajankohdat ja paikat on ilmoitettu TUNIMoodlessa.

Tenttien ja uusintatenttien ajankohdat

Opintojakson koe pidetään 20.02.2024 klo 08.00-11.00 juhlasalissa D1-04.
1. uusinta / korotus 27.03.2024 klo 17.00-20.00 luokissa B4-18 ja B4-27.
2. uusinta / korotus 17.04.2024 klo 17.00-20.00 luokissa B4-18 ja B4-27.

Ilmoittautuminen uusintakokeisiin viimeistään koetta edeltävänä sunnuntaina sähköpostitse.
Hyväksyttyä arvosanaa voi yrittää korottaa vain kerran.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.

Arviointimenetelmät ja arvioinnin perusteet

Opintojakso arvioidaan asteikolla 0-5.

Kotitehtävistä on mahdollista saada 1 piste / palautuskerta, yhteensä 7 pistettä. Kokeen maksimipistemäärä 43 pistettä. Yhteispistemäärä on täten 50 pistettä.

Arvosana määräytyy kotitehtävien ja kokeen yhteispistemäärän perusteella seuraavasti:

0 pistettä, arvosana 0
12,5 pistettä, arvosana 1
20 pistettä, arvosana 2
27,5 pistettä, arvosana 3
35 pistettä, arvosana 4
42,5 pistettä, arvosana 5

Arviointiasteikko

0-5

Opiskelumuodot ja opetusmenetelmät

- lähi/etäopetus ja itsenäinen opiskelu
- tuntitehtävät, kotitehtävät
- koe

Oppimateriaalit

Opettajan jakama materiaali Moodlessa
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS-laskin.

Opiskelijan ajankäyttö ja kuormitus

Opiskelijan keskimääräinen työmäärä on 81 h, joka koostuu:
-lähiopetuksesta
-itsenäisestä työskentelystä (mm. kotitehtävät, opetusvideot)
-kokeesta
Opettajan pitämiä lähitunteja koe mukaan lukien on 30 h.

Sisällön jaksotus

-erotusosamäärä ja derivaatta
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät
-regressio

Toteutuksen valinnaiset suoritustavat

-

Harjoittelu- ja työelämäyhteistyö

-

Kansainvälisyys

-

Lisätietoja opiskelijoille

Opetus alkaa 15.01.2024 lukujärjestyksen mukaisesti.

Ilmoittautumisaika

02.12.2023 - 11.01.2024

Ajoitus

08.01.2024 - 24.02.2024

Laajuus

3 op

Toteutustapa

Lähiopetus

Yksikkö

TAMK Matematiikka ja fysiikka

Toimipiste

TAMK Pääkampus

Opetuskielet
  • Suomi
Koulutus
  • Konetekniikan tutkinto-ohjelma
Opettaja
  • Ulla Miekkala
Vastuuhenkilö

Ulla Miekkala

Ryhmät
  • 23I112B
    Konetekniikka 2023

Tavoitteet (OJ)

Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa

Sisältö (OJ)

Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.

Esitietovaatimukset (OJ)

Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.

Arviointikriteerit, tyydyttävä (1-2) (OJ)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit, hyvä (3-4) (OJ)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit, kiitettävä (5) (OJ)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Aika ja paikka

Toteutus kestää 3. periodin ja opetus viikoittain:
ti 14-17 B4-27 (n. 40 mahtuu lähiopetukseen, loput voi osallistua zoomin välityksellä)
to 11-14 B2-35 (n. 40 mahtuu lähiopetukseen, loput voi osallistua zoomin välityksellä)

Tenttien ja uusintatenttien ajankohdat

Opintojakson välikokeet pidetään
1. välikoe ti 30.1. klo 14-16 (alustava aika, voi tulla muutoksia).
2. välikoe to 22.2. klo 12-14 (alustava aika, voi tulla muutoksia).
Uusintaan osallistuminen edellyttää arvosanaa nolla.
1. uusintakoe ke 27.3.2024 klo 17-20 B4-kerros
2. uusintakoe/ korotus ke 17.4.2024 klo 17-20 B4-kerros
Hyväksyttyä arvosanaa voi korottaa 2. uusintakokeessa.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Uusintakokeeseen ja korotukseen ilmoittaudutaan TAMKin tenttijärjestelmän kautta.

Arviointimenetelmät ja arvioinnin perusteet

Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan kahdella välikokeella, nettitehtävillä ja viikoittain tarkastettavilla harjoitustehtävillä. Molempiin välikokeisiin pitää osallistua.

Arvosteluun vaikuttavat nettitehtävät 15 %, välikokeet 75 % ja kotitehtävät 10 %. Kokeiden arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan, nettitehtävien ja kotitehtävien tekoa sekä molempiin välikokeisiin osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois. Arvosanan 1 saa pistemäärällä, joka on 30 % kurssin eri arviointimuotojen yhteenlasketusta maksimipistemäärästä, kuitenkin siten, että vähintään 15 % pisteistä on kokeista.

Uusinta- ja korotus:
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä-, nettitehtävä- eikä välikoepisteet.

Arviointiasteikko

0-5

Opiskelumuodot ja opetusmenetelmät

Lähi- ja etäopetus yhdessä sähkö- ja automaatiotekniikan ryhmän 23I231B kanssa. N. 40 mahtuu lähiopetukseen, loput voi osallistua opetukseen zoomin välityksellä.
Itsenäinen opiskelu, tuntiharjoitukset ja kotitehtävät, videomateriaalit, nettitehtävät, 2 välikoetta koululla.

Oppimateriaalit

Opettajan Moodlessa jakama materiaali (opetusmonisteet, videot, STACK-tehtävät)
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS/ TI-nspire CX II CAS -laskin.

Opiskelijan ajankäyttö ja kuormitus

Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-opetuksesta, jossa opettaja mukana (lähi- tai Zoom-tunnit)
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, nettitehtävät, opetusvideot)
-kokeista
Opettajan pitämiä lähitunteja on n. 30 h

Sisällön jaksotus

-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät

Lisätietoja opiskelijoille

Opetus alkaa viikolla 2 lukujärjestyksen mukaisesti eli ti 9.1.2024
Opintojaksoon on Moodle-toteutus.

Ilmoittautumisaika

02.12.2023 - 11.01.2024

Ajoitus

08.01.2024 - 03.03.2024

Laajuus

3 op

Toteutustapa

Lähiopetus

Yksikkö

TAMK Matematiikka ja fysiikka

Toimipiste

TAMK Pääkampus

Opetuskielet
  • Suomi
Paikat

0 - 40

Koulutus
  • Sähkö- ja automaatiotekniikan tutkinto-ohjelma
Opettaja
  • Ulla Miekkala
Vastuuhenkilö

Ulla Miekkala

Ryhmät
  • 23I231B
    Sähkö- ja automaatiotekniikka

Tavoitteet (OJ)

Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa

Sisältö (OJ)

Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.

Esitietovaatimukset (OJ)

Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.

Arviointikriteerit, tyydyttävä (1-2) (OJ)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit, hyvä (3-4) (OJ)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit, kiitettävä (5) (OJ)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Aika ja paikka

Toteutus kestää 3. periodin ja opetus viikoittain:
ti 14-17 B4-27 (n. 40 mahtuu lähiopetukseen, loput voi osallistua zoomin välityksellä)
to 11-14 B2-35 (n. 40 mahtuu lähiopetukseen, loput voi osallistua zoomin välityksellä)

Tenttien ja uusintatenttien ajankohdat

Opintojakson välikokeet pidetään
1. välikoe ti 30.1. klo 14-16 (alustava aika, voi tulla muutoksia).
2. välikoe to 22.2. klo 12-14 (alustava aika, voi tulla muutoksia).
Uusintaan osallistuminen edellyttää arvosanaa nolla.
1. uusintakoe ke 27.3.2024 klo 17-20 B4-kerros
2. uusintakoe/ korotus ke 17.4.2024 klo 17-20 B4-kerros
Hyväksyttyä arvosanaa voi korottaa 2. uusintakokeessa.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Uusintakokeeseen ja korotukseen ilmoittaudutaan TAMKin tenttijärjestelmän kautta.

Arviointimenetelmät ja arvioinnin perusteet

Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan kahdella välikokeella, nettitehtävillä ja viikoittain tarkastettavilla harjoitustehtävillä. Molempiin välikokeisiin pitää osallistua.

Arvosteluun vaikuttavat nettitehtävät 15 %, välikokeet 75 % ja kotitehtävät 10 %. Kokeiden arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan, nettitehtävien ja kotitehtävien tekoa sekä molempiin välikokeisiin osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois. Arvosanan 1 saa pistemäärällä, joka on 30 % kurssin eri arviointimuotojen yhteenlasketusta maksimipistemäärästä, kuitenkin siten, että vähintään 15 % pisteistä on kokeista.

Uusinta- ja korotus:
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä-, nettitehtävä- eikä välikoepisteet.

Arviointiasteikko

0-5

Opiskelumuodot ja opetusmenetelmät

Lähi- ja etäopetus yhdessä konetekniikan ryhmän 23I112B kanssa. N. 40 mahtuu lähiopetukseen, loput voi osallistua opetukseen zoomin välityksellä.
Itsenäinen opiskelu, tuntiharjoitukset ja kotitehtävät, videomateriaalit, nettitehtävät, 2 välikoetta koululla.

Oppimateriaalit

Opettajan Moodlessa jakama materiaali (opetusmonisteet, videot, STACK-tehtävät)
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS/ TI-nspire CX II CAS -laskin.

Opiskelijan ajankäyttö ja kuormitus

Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-opetuksesta, jossa opettaja mukana (lähi- tai Zoom-tunnit)
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, nettitehtävät, opetusvideot)
-kokeista
Opettajan pitämiä lähitunteja on n. 30 h

Sisällön jaksotus

-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät

Lisätietoja opiskelijoille

Opetus alkaa viikolla 2 lukujärjestyksen mukaisesti eli ti 9.1.2024
Opintojaksoon on Moodle-toteutus.

Ilmoittautumisaika

02.12.2023 - 12.01.2024

Ajoitus

01.01.2024 - 03.03.2024

Laajuus

3 op

Toteutustapa

Lähiopetus

Toimipiste

TAMK Pääkampus

Opetuskielet
  • Suomi
Koulutus
  • Autotekniikan tutkinto-ohjelma
Opettaja
  • Sara Nortunen
Vastuuhenkilö

Sara Nortunen

Ryhmät
  • 23AUTOB
    Autotekniikka 2023

Tavoitteet (OJ)

Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa

Sisältö (OJ)

Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.

Esitietovaatimukset (OJ)

Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.

Arviointikriteerit, tyydyttävä (1-2) (OJ)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit, hyvä (3-4) (OJ)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit, kiitettävä (5) (OJ)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Tenttien ja uusintatenttien ajankohdat

Opintojakson koe pidetään 19.2.2023 tuntiaikaan (alustava aika, voi tulla muutoksia).
Uusintaan osallistuminen edellyttää arvosanaa nolla.
1. uusinta 27.3.2023 klo 17.00-20.00 luokassa x.
2. uusinta/korotus 17.4.2023 klo 17.00-20.00 luokassa x.
Hyväksyttyä arvosanaa voi korottaa 2. uusintakokeessa.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Uusintakokeeseen ja korotukseen ilmoittaudutaan TAMKin tenttijärjestelmän kautta.

Arviointimenetelmät ja arvioinnin perusteet

Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan kokeella ja viikoittain tarkastettavilla harjoitustehtävillä, joiden tekeminen vaikuttaa arvosanaan. Kotitehtäväpisteiden saamiseksi tehtävät on palautettava kirjallisesti (tarkemmat ohjeet Moodlessa). Opintojaksoon saattaa sisältyä myös ryhmässä tehtäviä osioita. Kokeen arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan, kotitehtävien aktiivista tekemistä (vähintään 30%) sekä kurssikokeeseen osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois.
Harjoitustehtävillä saa lisäpisteitä oheisen taulukon mukaan:
yli 30% : 1
yli 50%: 2
yli 70% : 3
yli 90% : 4
Harjoitustehtäväpisteet eivät vaikuta kurssin läpipääsyyn vaan niillä voi korottaa arvosanaa. Lopullinen arvosana määräytyy koepisteiden ja harjoitustehtäväpisteiden yhteismäärästä sekä osallistumisaktiivisuudesta. Harjoitustehtäväpisteitä ei huomioida enää uusinta- ja korotustenttien yhteydessä.
Arviointikriteeri -hylätty(0):
Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.

Arviointiasteikko

0-5

Opiskelumuodot ja opetusmenetelmät

lähiopetus
etäopetus
ryhmätyö
harjoitukset
kurssikoe
uusintatentti

Oppimateriaalit

Opettajan jakama materiaali
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS-laskin.

Opiskelijan ajankäyttö ja kuormitus

Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-lähi/etäopetuksesta, jossa opettajaja mukana
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, STACK-tehtävät, opetusvideot)
-kokeesta
Opettajan pitämiä oppitunteja on n. 27-30 h.

Sisällön jaksotus

-regressio
-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät

Lisätietoja opiskelijoille

Opetus alkaa 8.1. lukujärjestyksen mukaisesti.
Opintojaksoon on Moodle-toteutus. Oppitunnit pyritään pitämään lähiopetuksena etämahdollisuuden kanssa. Etäopetuksen Zoom-linkki on annettu Moodlessa. Tarvittaessa oppitunnit pidetään kokonaan etänä.

Ilmoittautumisaika

02.12.2023 - 11.01.2024

Ajoitus

01.01.2024 - 03.03.2024

Laajuus

3 op

Toteutustapa

Lähiopetus

Yksikkö

TAMK Matematiikka ja fysiikka

Toimipiste

TAMK Pääkampus

Opetuskielet
  • Suomi
Koulutus
  • Konetekniikan tutkinto-ohjelma
Opettaja
  • Kirsi-Maria Rinneheimo
Vastuuhenkilö

Kirsi-Maria Rinneheimo

Ryhmät
  • 23I112A
    Konetekniikka 2023

Tavoitteet (OJ)

Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa

Sisältö (OJ)

Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.

Esitietovaatimukset (OJ)

Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.

Arviointikriteerit, tyydyttävä (1-2) (OJ)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit, hyvä (3-4) (OJ)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit, kiitettävä (5) (OJ)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Aika ja paikka

Toteutus kestää 3. periodin ja opetus viikoittain:
ti 11-14 B2-35 (n. 40 mahtuu lähiopetukseen, loput voi osallistua zoomin välityksellä)
to 14-17 B2-35 (n. 40 mahtuu lähiopetukseen, loput voi osallistua zoomin välityksellä)

Tenttien ja uusintatenttien ajankohdat

Opintojakson välikokeet pidetään
1. välikoe ti 30.1. klo 11-13 (alustava aika, voi tulla muutoksia).
2. välikoe ti 20.2. klo 11-13 (alustava aika, voi tulla muutoksia).
Uusintaan osallistuminen edellyttää arvosanaa nolla.
1. uusintakoe ke 27.3.2024 klo 17-20 B4-kerros
2. uusintakoe/ korotus ke 17.4.2024 klo 17-20 B4-kerros
Hyväksyttyä arvosanaa voi korottaa 2. uusintakokeessa.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Uusintakokeeseen ja korotukseen ilmoittaudutaan TAMKin tenttijärjestelmän kautta.

Arviointimenetelmät ja arvioinnin perusteet

Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan kahdella välikokeella, nettitehtävillä ja viikoittain tarkastettavilla harjoitustehtävillä. Molempiin välikokeisiin pitää osallistua.

Arvosteluun vaikuttavat nettitehtävät 15 %, välikokeet 75 % ja kotitehtävät 10 %. Kokeiden arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan, nettitehtävien ja kotitehtävien tekoa sekä molempiin välikokeisiin osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois. Arvosanan 1 saa pistemäärällä, joka on 30 % kurssin eri arviointimuotojen yhteenlasketusta maksimipistemäärästä, kuitenkin siten, että vähintään 15 % pisteistä on kokeista.

Uusinta- ja korotus:
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä-, nettitehtävä- eikä välikoepisteet.

Arviointiasteikko

0-5

Opiskelumuodot ja opetusmenetelmät

Lähi- ja etäopetus yhdessä ryhmien 23I112A ja 23I112C kanssa. N. 40 mahtuu lähiopetukseen, loput voi osallistua opetukseen Zoomin välityksellä.
Itsenäinen opiskelu, tuntiharjoitukset ja kotitehtävät, videomateriaalit, nettitehtävät, 2 välikoetta koululla.

Oppimateriaalit

Opettajan Moodlessa jakama materiaali (opetusmonisteet, videot, STACK-tehtävät)
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS/ TI-nspire CX II CAS -laskin.

Opiskelijan ajankäyttö ja kuormitus

Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-opetuksesta, jossa opettaja mukana (lähi- tai Zoom-tunnit)
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, nettitehtävät, opetusvideot)
-kokeista
Opettajan pitämiä lähitunteja on n. 30 h

Sisällön jaksotus

-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät

Lisätietoja opiskelijoille

Opetus alkaa viikolla 2 lukujärjestyksen mukaisesti eli ti 9.1.2024
Opintojaksoon on Moodle-toteutus.

Ilmoittautumisaika

02.12.2023 - 11.01.2024

Ajoitus

01.01.2024 - 03.03.2024

Laajuus

3 op

Toteutustapa

Lähiopetus

Yksikkö

TAMK Matematiikka ja fysiikka

Toimipiste

TAMK Pääkampus

Opetuskielet
  • Suomi
Koulutus
  • Konetekniikan tutkinto-ohjelma
Opettaja
  • Kirsi-Maria Rinneheimo
Vastuuhenkilö

Kirsi-Maria Rinneheimo

Ryhmät
  • 23I112C
    Konetekniikka 2023

Tavoitteet (OJ)

Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa

Sisältö (OJ)

Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.

Esitietovaatimukset (OJ)

Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.

Arviointikriteerit, tyydyttävä (1-2) (OJ)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit, hyvä (3-4) (OJ)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit, kiitettävä (5) (OJ)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Aika ja paikka

Toteutus kestää 3. periodin ja opetus viikoittain:
ti 11-14 B2-35 (n. 40 mahtuu lähiopetukseen, loput voi osallistua zoomin välityksellä)
to 14-17 B2-35 (n. 40 mahtuu lähiopetukseen, loput voi osallistua zoomin välityksellä)

Tenttien ja uusintatenttien ajankohdat

Opintojakson välikokeet pidetään
1. välikoe ti 30.1. klo 11-13 (alustava aika, voi tulla muutoksia).
2. välikoe ti 20.2. klo 11-13 (alustava aika, voi tulla muutoksia).
Uusintaan osallistuminen edellyttää arvosanaa nolla.
1. uusintakoe ke 27.3.2024 klo 17-20 B4-kerros
2. uusintakoe/ korotus ke 17.4.2024 klo 17-20 B4-kerros
Hyväksyttyä arvosanaa voi korottaa 2. uusintakokeessa.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Uusintakokeeseen ja korotukseen ilmoittaudutaan TAMKin tenttijärjestelmän kautta.

Arviointimenetelmät ja arvioinnin perusteet

Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan kahdella välikokeella, nettitehtävillä ja viikoittain tarkastettavilla harjoitustehtävillä. Molempiin välikokeisiin pitää osallistua.

Arvosteluun vaikuttavat nettitehtävät 15 %, välikokeet 75 % ja kotitehtävät 10 %. Kokeiden arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan, nettitehtävien ja kotitehtävien tekoa sekä molempiin välikokeisiin osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois. Arvosanan 1 saa pistemäärällä, joka on 30 % kurssin eri arviointimuotojen yhteenlasketusta maksimipistemäärästä, kuitenkin siten, että vähintään 15 % pisteistä on kokeista.

Uusinta- ja korotus:
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä-, nettitehtävä- eikä välikoepisteet.

Arviointiasteikko

0-5

Opiskelumuodot ja opetusmenetelmät

Lähi- ja etäopetus yhdessä ryhmien 23I112A ja 23I112C kanssa. N. 40 mahtuu lähiopetukseen, loput voi osallistua opetukseen Zoomin välityksellä.
Itsenäinen opiskelu, tuntiharjoitukset ja kotitehtävät, videomateriaalit, nettitehtävät, 2 välikoetta koululla.

Oppimateriaalit

Opettajan Moodlessa jakama materiaali (opetusmonisteet, videot, STACK-tehtävät)
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS/ TI-nspire CX II CAS -laskin.

Opiskelijan ajankäyttö ja kuormitus

Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-opetuksesta, jossa opettaja mukana (lähi- tai Zoom-tunnit)
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, nettitehtävät, opetusvideot)
-kokeista
Opettajan pitämiä lähitunteja on n. 30 h

Sisällön jaksotus

-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät

Lisätietoja opiskelijoille

Opetus alkaa viikolla 2 lukujärjestyksen mukaisesti eli ti 9.1.2024
Opintojaksoon on Moodle-toteutus.

Ilmoittautumisaika

22.11.2023 - 05.01.2024

Ajoitus

01.01.2024 - 31.07.2024

Laajuus

3 op

Toteutustapa

Lähiopetus

Yksikkö

TAMK Matematiikka ja fysiikka

Toimipiste

TAMK Pääkampus

Opetuskielet
  • Suomi
Koulutus
  • Laboratoriotekniikan tutkinto-ohjelma
Opettaja
  • Jukka Suominen
Vastuuhenkilö

Jukka Suominen

Ryhmät
  • 23LATELAB
    Laboratoriotekniikka 2023, monimuoto

Tavoitteet (OJ)

Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa

Sisältö (OJ)

Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.

Esitietovaatimukset (OJ)

Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.

Arviointikriteerit, tyydyttävä (1-2) (OJ)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit, hyvä (3-4) (OJ)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit, kiitettävä (5) (OJ)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Aika ja paikka

Ajankohdat ja paikat on ilmoitettu TUNIMoodlessa.

Tenttien ja uusintatenttien ajankohdat

Opintojakson koe pidetään 20.05.2024 klo 16.15-19.00 luokassa B2-35.
1. uusinta / korotus 28.05.2024 klo 19.00-22.00 etäkoe. / 03.06.2024 klo 18.00-21.00 etäkoe.
2. uusinta / korotus 23.08.2024 klo 18.00-21.00 etäkoe.

Ilmoittautuminen uusintakokeisiin viimeistään koetta edeltävänä sunnuntaina sähköpostitse.
Hyväksyttyä arvosanaa voi yrittää korottaa vain kerran.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.

Arviointimenetelmät ja arvioinnin perusteet

Opintojakso arvioidaan asteikolla 0-5.

Kotitehtävistä on mahdollista saada 1 piste / palautuskerta, yhteensä 8 pistettä. Kokeen maksimipistemäärä 32 pistettä. Yhteispistemäärä on täten 40 pistettä.

Arvosana määräytyy kotitehtävien ja kokeen yhteispistemäärän perusteella seuraavasti:

0 pistettä, arvosana 0
10 pistettä, arvosana 1
16 pistettä, arvosana 2
22 pistettä, arvosana 3
28 pistettä, arvosana 4
34 pistettä, arvosana 5

Arviointiasteikko

0-5

Opiskelumuodot ja opetusmenetelmät

- etäopetus ja itsenäinen opiskelu
- tuntitehtävät, kotitehtävät
- koe

Oppimateriaalit

Opettajan jakama materiaali Moodlessa
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS-laskin.

Opiskelijan ajankäyttö ja kuormitus

Opiskelijan keskimääräinen työmäärä on 81 h, joka koostuu:
-lähiopetuksesta
-itsenäisestä työskentelystä (mm. kotitehtävät, opetusvideot)
-kokeesta
Opettajan pitämiä lähitunteja koe mukaan lukien on 30 h.

Sisällön jaksotus

-erotusosamäärä ja derivaatta
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät
-regressio

Toteutuksen valinnaiset suoritustavat

-

Harjoittelu- ja työelämäyhteistyö

-

Kansainvälisyys

-

Lisätietoja opiskelijoille

Opetus alkaa 13.01.2024 lukujärjestyksen mukaisesti.

Ilmoittautumisaika

01.12.2023 - 04.01.2024

Ajoitus

01.01.2024 - 03.03.2024

Laajuus

3 op

Toteutustapa

Lähiopetus

Yksikkö

TAMK Matematiikka ja fysiikka

Toimipiste

TAMK Pääkampus

Opetuskielet
  • Suomi
Koulutus
  • Rakennustekniikan tutkinto-ohjelma
Opettaja
  • Pia Ruokonen-Kaukolinna
Vastuuhenkilö

Pia Ruokonen-Kaukolinna

Ryhmät
  • 23RTA
    Rakennustekniikka

Tavoitteet (OJ)

Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa

Sisältö (OJ)

Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.

Esitietovaatimukset (OJ)

Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.

Arviointikriteerit, tyydyttävä (1-2) (OJ)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit, hyvä (3-4) (OJ)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit, kiitettävä (5) (OJ)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Tenttien ja uusintatenttien ajankohdat

Opintojakso suoritetaan viikottaisilla harjoitustehtävillä, nettitehtävillä ja kokeilla, joiden ajat varmistetaan vielä kurssin aikana. Huom! koeaika mahdollisesti muu kuin normaali tuntiaika

Alustavat ajat (näihin voi tulla muutoksia, joista tiedotetaan tunneilla ja sähköpostilla)
1. välikoe (aika ilmoitetaan kurssin aikana,)
2. välikoe 23.2.2024

Välikokeita ei voi uusia eikä korottaa.

Koko kurssin uusintakokeet järjestetään seuraavasti:

1. uusintakoe 27.3.2024 klo 17-20 (luokkatilat B4-27 ja B4-18)
2. uusintakoe/ korotus 17.4.2023 klo 17-20 (luokkatilat B4-27 ja B4-18)

Uusinnat ja korotukset ovat vain ja ainoastaan tässä ilmoitettuna aikana, ei siis myöhemmin esim. seuraavana vuonna.
Uusintakokeeseen ja korotukseen ilmoittaudutaan Pakin kautta.
Uusintaan osallistuminen edellyttää arvosanaa 0.

Yleiseti kokeesta:
Sairastapauksissa vaaditaan lääkärintodistus.
Poissaolo kokeesta vastaa hylättyä suoritusta.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.

Arviointimenetelmät ja arvioinnin perusteet

Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan välikokeilla, nettitehtävillä ja viikoittain tarkastettavilla harjoitustehtävillä,

Arvosteluun vaikuttavat nettitehtävät 15 % (max. 6 p) , kotitehtävät 10 % (max. 4 p) ja välikokeet 75 % (max. 30 p). Kokeiden arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan, nettitehtävien ja kotitehtävien tekoa sekä kokeisiin osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunteja seurataan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois. Arvosanan 1 saa pistemäärällä, joka on 30 % (12 p) kurssin eri arviointimuotojen yhteenlasketusta maksimipistemäärästä, kuitenkin siten, että 15 % ( 6 p) on kokeesta.


Uusinta- ja korotus:
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä-, nettitehtävä- eikä aiemmat koepisteet.
Yksittäisiä välikokeita ei voi uusia eikä korottaa.

Arviointikriteeri - hylätty (0)
Opiskelija osallistuu säännöllisesti opetukseen ja sen työmuotoihin, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Mikäli edellä mainitut kriteerit eivät täyty, niin opiskelija poistetaan toteutukselta. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.

Arviointiasteikko

0-5

Opiskelumuodot ja opetusmenetelmät

Lähiopetus/etäopetus, itsenäinen opiskelu, videomateriaalit, tuntiharjoitukset ja kotitehtävät, nettitehtävät (STACK-tehtävät), kokeet.
Zoom-linkki löytyy kurssin Moodlesta.

Oppimateriaalit

Opettajan Moodlessa jakama materiaali (pdf-materiaalit, videot, interaktiiviset tehtävät)
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS/ TI-nspire CX II CAS -laskin.

Opiskelijan ajankäyttö ja kuormitus

Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
- opetuksesta, jossa opettaja mukana
- kotitehtävistä, nettitehtävistä ja mahdollisista ryhmätöistä (opettaja ei ole mukana),
- itsenäisestä työskentelystä
- kokeista
Opettajan pitämiä tunteja on n. 30 h.

Sisällön jaksotus

Sisällön jaksotus on suuntaa antava. Osa opsissa mainituista kokonaisuuksista on tarkoitus suorittaa itsenäisenä opiskeluna ja/tai ryhmätöinä.

-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät

Lisätietoja opiskelijoille

Opetus alkaa lukujärjestyksen mukaisesti viikolla 2.
Opintojaksoon tulee Moodle-toteutus. Toteutus ei näy automaattisesti, vaan se täytyy hakea kurssitunnuksella. Opettaja lähettää ilmoittautuneille ennen kurssin alkua Moodle-avaimen sähköpostilla. Etäopetuksen Zoom-linkki löytyy Moodlesta.

Toteutukset 5N00EG74-3101 (23RTA) ja 5N00EG74-3106 (23RTD) opetetaan yhdessä ja näillä on yhteinen Moodle, joka on nimetty 5N00EG74-3101/-3106 Differentiaalilaskenta (23RTA, 23RTD)

Ilmoittautumisaika

01.12.2023 - 04.01.2024

Ajoitus

01.01.2024 - 04.03.2024

Laajuus

3 op

Toteutustapa

Lähiopetus

Yksikkö

TAMK Matematiikka ja fysiikka

Toimipiste

TAMK Pääkampus

Opetuskielet
  • Suomi
Koulutus
  • Talotekniikan tutkinto-ohjelma, LVI-talotekniikka
Opettaja
  • Pia Ruokonen-Kaukolinna
Vastuuhenkilö

Pia Ruokonen-Kaukolinna

Ryhmät
  • 23I253
    LVI-talotekniikka

Tavoitteet (OJ)

Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa

Sisältö (OJ)

Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.

Esitietovaatimukset (OJ)

Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.

Arviointikriteerit, tyydyttävä (1-2) (OJ)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit, hyvä (3-4) (OJ)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit, kiitettävä (5) (OJ)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Tenttien ja uusintatenttien ajankohdat

Opintojakso suoritetaan viikottaisilla harjoitustehtävillä, nettitehtävillä ja kokeilla, joiden ajat varmistetaan vielä kurssin aikana. Huom! koeaika mahdollisesti muu kuin normaali tuntiaika

Alustavat ajat (näihin voi tulla muutoksia, joista tiedotetaan tunneilla ja sähköpostilla)
1. välikoe (aika ilmoitetaan kurssin aikana,)
2. välikoe 22.2.2024

Välikokeita ei voi uusia eikä korottaa.

Koko kurssin uusintakokeet järjestetään seuraavasti:

1. uusintakoe 27.3.2024 klo 17-20 (luokkatilat B4-27 ja B4-18)
2. uusintakoe/ korotus 17.4.2023 klo 17-20 (luokkatilat B4-27 ja B4-18)

Uusinnat ja korotukset ovat vain ja ainoastaan tässä ilmoitettuna aikana, ei siis myöhemmin esim. seuraavana vuonna.
Uusintakokeeseen ja korotukseen ilmoittaudutaan Pakin kautta.
Uusintaan osallistuminen edellyttää arvosanaa 0.

Yleiseti kokeesta:
Sairastapauksissa vaaditaan lääkärintodistus.
Poissaolo kokeesta vastaa hylättyä suoritusta.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.

Arviointimenetelmät ja arvioinnin perusteet

Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan välikokeilla, nettitehtävillä ja viikoittain tarkastettavilla harjoitustehtävillä,

Arvosteluun vaikuttavat nettitehtävät 15 %, kotitehtävät 10 % ja viikkokokeet/välikokeet 75 %. Kokeiden arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan, nettitehtävien ja kotitehtävien tekoa sekä kokeisiin osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunteja seurataan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois. Arvosanan 1 saa pistemäärällä, joka on 30 % kurssin eri arviointimuotojen yhteenlasketusta maksimipistemäärästä, kuitenkin siten, että 15 % on kokeesta.


Uusinta- ja korotus:
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä-, nettitehtävä- eikä aiemmat koepisteet.
Yksittäisiä välikokeita ei voi uusia eikä korottaa.

Arviointikriteeri - hylätty (0)
Opiskelija osallistuu säännöllisesti opetukseen ja sen työmuotoihin, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Mikäli edellä mainitut kriteerit eivät täyty, niin opiskelija poistetaan toteutukselta. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.

Arviointiasteikko

0-5

Opiskelumuodot ja opetusmenetelmät

Lähiopetus/etäopetus, itsenäinen opiskelu, videomateriaalit, tuntiharjoitukset ja kotitehtävät, nettitehtävät (STACK-tehtävät), kokeet.
Zoom-linkki löytyy kurssin Moodlesta.

Oppimateriaalit

Opettajan Moodlessa jakama materiaali (pdf-materiaalit, videot, interaktiiviset tehtävät)
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS/ TI-nspire CX II CAS -laskin.

Opiskelijan ajankäyttö ja kuormitus

Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
- opetuksesta, jossa opettaja mukana
- kotitehtävistä, nettitehtävistä ja mahdollisista ryhmätöistä (opettaja ei ole mukana),
- itsenäisestä työskentelystä
- kokeista
Opettajan pitämiä tunteja on n. 30 h.

Sisällön jaksotus

Sisällön jaksotus on suuntaa antava. Osa opsissa mainituista kokonaisuuksista on tarkoitus suorittaa itsenäisenä opiskeluna ja/tai ryhmätöinä.

-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät

Lisätietoja opiskelijoille

Opetus alkaa lukujärjestyksen mukaisesti viikolla 2.
Opintojaksoon tulee Moodle-toteutus. Toteutus ei näy automaattisesti, vaan se täytyy hakea kurssitunnuksella. Opettaja lähettää ilmoittautuneille ennen kurssin alkua Moodle-avaimen sähköpostilla. Etäopetuksen Zoom-linkki löytyy Moodlesta.

Toteutukset 5N00EG74-3102 (23I253) ja 5N00EG74-3103 (23I254) opetetaan yhdessä ja näillä on yhteinen Moodle, joka on nimetty 5N00EG74-3102/-3103 Differentiaalilaskenta (23I253, 23I254)

Ilmoittautumisaika

01.12.2023 - 04.01.2024

Ajoitus

01.01.2024 - 04.03.2024

Laajuus

3 op

Toteutustapa

Lähiopetus

Yksikkö

TAMK Matematiikka ja fysiikka

Toimipiste

TAMK Pääkampus

Opetuskielet
  • Suomi
Koulutus
  • Talotekniikan tutkinto-ohjelma, Sähköinen talotekniikka
Opettaja
  • Pia Ruokonen-Kaukolinna
Vastuuhenkilö

Pia Ruokonen-Kaukolinna

Ryhmät
  • 23I254
    Sähköinen talotekniikka

Tavoitteet (OJ)

Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa

Sisältö (OJ)

Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.

Esitietovaatimukset (OJ)

Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.

Arviointikriteerit, tyydyttävä (1-2) (OJ)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit, hyvä (3-4) (OJ)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit, kiitettävä (5) (OJ)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Tenttien ja uusintatenttien ajankohdat

Opintojakso suoritetaan viikottaisilla harjoitustehtävillä, nettitehtävillä ja kokeilla, joiden ajat varmistetaan vielä kurssin aikana. Huom! koeaika mahdollisesti muu kuin normaali tuntiaika

Alustavat ajat (näihin voi tulla muutoksia, joista tiedotetaan tunneilla ja sähköpostilla)
1. välikoe (aika ilmoitetaan kurssin aikana,)
2. välikoe 22.2.2024

Välikokeita ei voi uusia eikä korottaa.

Koko kurssin uusintakokeet järjestetään seuraavasti:

1. uusintakoe 27.3.2024 klo 17-20 (luokkatilat B4-27 ja B4-18)
2. uusintakoe/ korotus 17.4.2023 klo 17-20 (luokkatilat B4-27 ja B4-18)

Uusinnat ja korotukset ovat vain ja ainoastaan tässä ilmoitettuna aikana, ei siis myöhemmin esim. seuraavana vuonna.
Uusintakokeeseen ja korotukseen ilmoittaudutaan Pakin kautta.
Uusintaan osallistuminen edellyttää arvosanaa 0.

Yleiseti kokeesta:
Sairastapauksissa vaaditaan lääkärintodistus.
Poissaolo kokeesta vastaa hylättyä suoritusta.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.

Arviointimenetelmät ja arvioinnin perusteet

Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan välikokeilla, nettitehtävillä ja viikoittain tarkastettavilla harjoitustehtävillä,

Arvosteluun vaikuttavat nettitehtävät 15 %, kotitehtävät 10 % ja viikkokokeet/välikokeet 75 %. Kokeiden arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan, nettitehtävien ja kotitehtävien tekoa sekä kokeisiin osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunteja seurataan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois. Arvosanan 1 saa pistemäärällä, joka on 30 % kurssin eri arviointimuotojen yhteenlasketusta maksimipistemäärästä, kuitenkin siten, että 15 % on kokeesta.


Uusinta- ja korotus:
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä-, nettitehtävä- eikä aiemmat koepisteet.
Yksittäisiä välikokeita ei voi uusia eikä korottaa.

Arviointikriteeri - hylätty (0)
Opiskelija osallistuu säännöllisesti opetukseen ja sen työmuotoihin, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Mikäli edellä mainitut kriteerit eivät täyty, niin opiskelija poistetaan toteutukselta. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.

Arviointiasteikko

0-5

Opiskelumuodot ja opetusmenetelmät

Lähiopetus/etäopetus, itsenäinen opiskelu, videomateriaalit, tuntiharjoitukset ja kotitehtävät, nettitehtävät (STACK-tehtävät), kokeet.
Zoom-linkki löytyy kurssin Moodlesta.

Oppimateriaalit

Opettajan Moodlessa jakama materiaali (pdf-materiaalit, videot, interaktiiviset tehtävät)
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS/ TI-nspire CX II CAS -laskin.

Opiskelijan ajankäyttö ja kuormitus

Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
- opetuksesta, jossa opettaja mukana
- kotitehtävistä, nettitehtävistä ja mahdollisista ryhmätöistä (opettaja ei ole mukana),
- itsenäisestä työskentelystä
- kokeista
Opettajan pitämiä tunteja on n. 30 h.

Sisällön jaksotus

Sisällön jaksotus on suuntaa antava. Osa opsissa mainituista kokonaisuuksista on tarkoitus suorittaa itsenäisenä opiskeluna ja/tai ryhmätöinä.

-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät

Lisätietoja opiskelijoille

Opetus alkaa lukujärjestyksen mukaisesti viikolla 2.
Opintojaksoon tulee Moodle-toteutus. Toteutus ei näy automaattisesti, vaan se täytyy hakea kurssitunnuksella. Opettaja lähettää ilmoittautuneille ennen kurssin alkua Moodle-avaimen sähköpostilla. Etäopetuksen Zoom-linkki löytyy Moodlesta.

Toteutukset 5N00EG74-3102 (23I253) ja 5N00EG74-3103 (23I254) opetetaan yhdessä ja näillä on yhteinen Moodle, joka on nimetty 5N00EG74-3102/-3103 Differentiaalilaskenta (23I253, 23I254)

Ilmoittautumisaika

01.12.2023 - 22.01.2024

Ajoitus

01.01.2024 - 03.03.2024

Laajuus

3 op

Toteutustapa

Lähiopetus

Yksikkö

TAMK Matematiikka ja fysiikka

Toimipiste

TAMK Pääkampus

Opetuskielet
  • Suomi
Koulutus
  • Rakennustekniikan tutkinto-ohjelma
Opettaja
  • Kirsi-Maria Rinneheimo
Vastuuhenkilö

Kirsi-Maria Rinneheimo

Ryhmät
  • 23RTB
    Rakennustekniikka

Tavoitteet (OJ)

Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa

Sisältö (OJ)

Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.

Esitietovaatimukset (OJ)

Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.

Arviointikriteerit, tyydyttävä (1-2) (OJ)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit, hyvä (3-4) (OJ)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit, kiitettävä (5) (OJ)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Aika ja paikka

Toteutus kestää 3. periodin ja opetus viikoittain:
ti 11-14 B2-35 (n. 40 mahtuu lähiopetukseen, loput voi osallistua zoomin välityksellä)
to 14-17 B2-35 (n. 40 mahtuu lähiopetukseen, loput voi osallistua zoomin välityksellä)

Tenttien ja uusintatenttien ajankohdat

Opintojakson välikokeet pidetään
1. välikoe ke 31.1. klo 9-11 (alustava aika, voi tulla muutoksia).
2. välikoe ke 21.2. klo 11-13 (alustava aika, voi tulla muutoksia).
Uusintaan osallistuminen edellyttää arvosanaa nolla.
1. uusintakoe ke 27.3.2024 klo 17-20 B4-kerros
2. uusintakoe/ korotus ke 17.4.2024 klo 17-20 B4-kerros
Hyväksyttyä arvosanaa voi korottaa 2. uusintakokeessa.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Uusintakokeeseen ja korotukseen ilmoittaudutaan TAMKin tenttijärjestelmän kautta.

Arviointimenetelmät ja arvioinnin perusteet

Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan kahdella välikokeella, nettitehtävillä ja viikoittain tarkastettavilla harjoitustehtävillä. Molempiin välikokeisiin pitää osallistua.

Arvosteluun vaikuttavat nettitehtävät 15 %, välikokeet 75 % ja kotitehtävät 10 %. Kokeiden arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan, nettitehtävien ja kotitehtävien tekoa sekä molempiin välikokeisiin osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois. Arvosanan 1 saa pistemäärällä, joka on 30 % kurssin eri arviointimuotojen yhteenlasketusta maksimipistemäärästä, kuitenkin siten, että vähintään 15 % pisteistä on kokeista.

Uusinta- ja korotus:
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä-, nettitehtävä- eikä välikoepisteet.

Arviointiasteikko

0-5

Opiskelumuodot ja opetusmenetelmät

Lähi- ja etäopetus yhdessä ryhmien 23RTB ja 23RTC kanssa. N. 40 mahtuu lähiopetukseen, loput voi osallistua opetukseen Zoomin välityksellä.
Itsenäinen opiskelu, tuntiharjoitukset ja kotitehtävät, videomateriaalit, nettitehtävät, 2 välikoetta koululla.

Oppimateriaalit

Opettajan Moodlessa jakama materiaali (opetusmonisteet, videot, STACK-tehtävät)
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS/ TI-nspire CX II CAS -laskin.

Opiskelijan ajankäyttö ja kuormitus

Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-opetuksesta, jossa opettaja mukana (lähi- tai Zoom-tunnit)
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, nettitehtävät, opetusvideot)
-kokeista
Opettajan pitämiä lähitunteja on n. 30 h

Sisällön jaksotus

-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät

Lisätietoja opiskelijoille

Opetus alkaa viikolla 2 lukujärjestyksen mukaisesti eli ti 9.1.2024
Opintojaksoon on Moodle-toteutus.

Ilmoittautumisaika

01.12.2023 - 22.01.2024

Ajoitus

01.01.2024 - 03.03.2024

Laajuus

3 op

Toteutustapa

Lähiopetus

Yksikkö

TAMK Matematiikka ja fysiikka

Toimipiste

TAMK Pääkampus

Opetuskielet
  • Suomi
Koulutus
  • Rakennustekniikan tutkinto-ohjelma
Opettaja
  • Kirsi-Maria Rinneheimo
Vastuuhenkilö

Kirsi-Maria Rinneheimo

Ryhmät
  • 23RTC
    Rakennustekniikka

Tavoitteet (OJ)

Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa

Sisältö (OJ)

Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.

Esitietovaatimukset (OJ)

Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.

Arviointikriteerit, tyydyttävä (1-2) (OJ)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit, hyvä (3-4) (OJ)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit, kiitettävä (5) (OJ)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Arviointiasteikko

0-5

Ilmoittautumisaika

01.12.2023 - 04.01.2024

Ajoitus

01.01.2024 - 03.03.2024

Laajuus

3 op

Toteutustapa

Lähiopetus

Yksikkö

TAMK Matematiikka ja fysiikka

Toimipiste

TAMK Pääkampus

Opetuskielet
  • Suomi
Koulutus
  • Rakennustekniikan tutkinto-ohjelma
Opettaja
  • Pia Ruokonen-Kaukolinna
Vastuuhenkilö

Pia Ruokonen-Kaukolinna

Ryhmät
  • 23RTD
    Rakennustekniikka

Tavoitteet (OJ)

Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa

Sisältö (OJ)

Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.

Esitietovaatimukset (OJ)

Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.

Arviointikriteerit, tyydyttävä (1-2) (OJ)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit, hyvä (3-4) (OJ)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit, kiitettävä (5) (OJ)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Tenttien ja uusintatenttien ajankohdat

Opintojakso suoritetaan viikottaisilla harjoitustehtävillä, nettitehtävillä ja kokeilla, joiden ajat varmistetaan vielä kurssin aikana. Huom! koeaika mahdollisesti muu kuin normaali tuntiaika

Alustavat ajat (näihin voi tulla muutoksia, joista tiedotetaan tunneilla ja sähköpostilla)
1. välikoe (aika ilmoitetaan kurssin aikana,)
2. välikoe 23.2.2024

Välikokeita ei voi uusia eikä korottaa.

Koko kurssin uusintakokeet järjestetään seuraavasti:

1. uusintakoe 27.3.2024 klo 17-20 (luokkatilat B4-27 ja B4-18)
2. uusintakoe/ korotus 17.4.2023 klo 17-20 (luokkatilat B4-27 ja B4-18)

Uusinnat ja korotukset ovat vain ja ainoastaan tässä ilmoitettuna aikana, ei siis myöhemmin esim. seuraavana vuonna.
Uusintakokeeseen ja korotukseen ilmoittaudutaan Pakin kautta.
Uusintaan osallistuminen edellyttää arvosanaa 0.

Yleiseti kokeesta:
Sairastapauksissa vaaditaan lääkärintodistus.
Poissaolo kokeesta vastaa hylättyä suoritusta.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.

Arviointimenetelmät ja arvioinnin perusteet

Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan välikokeilla, nettitehtävillä ja viikoittain tarkastettavilla harjoitustehtävillä,

Arvosteluun vaikuttavat nettitehtävät 15 %, kotitehtävät 10 % ja viikkokokeet/välikokeet 75 %. Kokeiden arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan, nettitehtävien ja kotitehtävien tekoa sekä kokeisiin osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunteja seurataan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois. Arvosanan 1 saa pistemäärällä, joka on 30 % kurssin eri arviointimuotojen yhteenlasketusta maksimipistemäärästä, kuitenkin siten, että 15 % on kokeesta.


Uusinta- ja korotus:
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä-, nettitehtävä- eikä aiemmat koepisteet.
Yksittäisiä välikokeita ei voi uusia eikä korottaa.

Arviointikriteeri - hylätty (0)
Opiskelija osallistuu säännöllisesti opetukseen ja sen työmuotoihin, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Mikäli edellä mainitut kriteerit eivät täyty, niin opiskelija poistetaan toteutukselta. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.

Arviointiasteikko

0-5

Opiskelumuodot ja opetusmenetelmät

Lähiopetus/etäopetus, itsenäinen opiskelu, videomateriaalit, tuntiharjoitukset ja kotitehtävät, nettitehtävät (STACK-tehtävät), kokeet.
Zoom-linkki löytyy kurssin Moodlesta.

Oppimateriaalit

Opettajan Moodlessa jakama materiaali (pdf-materiaalit, videot, interaktiiviset tehtävät)
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS/ TI-nspire CX II CAS -laskin.

Opiskelijan ajankäyttö ja kuormitus

Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
- opetuksesta, jossa opettaja mukana
- kotitehtävistä, nettitehtävistä ja mahdollisista ryhmätöistä (opettaja ei ole mukana),
- itsenäisestä työskentelystä
- kokeista
Opettajan pitämiä tunteja on n. 30 h.

Sisällön jaksotus

Sisällön jaksotus on suuntaa antava. Osa opsissa mainituista kokonaisuuksista on tarkoitus suorittaa itsenäisenä opiskeluna ja/tai ryhmätöinä.

-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät

Lisätietoja opiskelijoille

Opetus alkaa lukujärjestyksen mukaisesti viikolla 2.
Opintojaksoon tulee Moodle-toteutus. Toteutus ei näy automaattisesti, vaan se täytyy hakea kurssitunnuksella. Opettaja lähettää ilmoittautuneille ennen kurssin alkua Moodle-avaimen sähköpostilla. Etäopetuksen Zoom-linkki löytyy Moodlesta.

Toteutukset 5N00EG74-3101 (23RTA) ja 5N00EG74-3106 (23RTD) opetetaan yhdessä ja näillä on yhteinen Moodle, joka on nimetty 5N00EG74-3101/-3106 Differentiaalilaskenta (23RTA, 23RTD)

Ilmoittautumisaika

02.12.2023 - 12.01.2024

Ajoitus

01.01.2024 - 25.02.2024

Laajuus

3 op

Toteutustapa

Lähiopetus

Yksikkö

TAMK Matematiikka ja fysiikka

Toimipiste

TAMK Pääkampus

Opetuskielet
  • Suomi
Koulutus
  • Autotekniikan tutkinto-ohjelma
Opettaja
  • Sara Nortunen
Vastuuhenkilö

Sara Nortunen

Ryhmät
  • 23AUTOA
    Autotekniikka 2023

Tavoitteet (OJ)

Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa

Sisältö (OJ)

Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.

Esitietovaatimukset (OJ)

Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.

Arviointikriteerit, tyydyttävä (1-2) (OJ)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit, hyvä (3-4) (OJ)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit, kiitettävä (5) (OJ)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Tenttien ja uusintatenttien ajankohdat

Opintojakson koe pidetään 19.2.2023 tuntiaikaan (alustava aika, voi tulla muutoksia).
Uusintaan osallistuminen edellyttää arvosanaa nolla.
1. uusinta 27.3.2023 klo 17.00-20.00 luokassa x.
2. uusinta/korotus 17.4.2023 klo 17.00-20.00 luokassa x.
Hyväksyttyä arvosanaa voi korottaa 2. uusintakokeessa.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Uusintakokeeseen ja korotukseen ilmoittaudutaan TAMKin tenttijärjestelmän kautta.

Arviointimenetelmät ja arvioinnin perusteet

Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan kokeella ja viikoittain tarkastettavilla harjoitustehtävillä, joiden tekeminen vaikuttaa arvosanaan. Kotitehtäväpisteiden saamiseksi tehtävät on palautettava kirjallisesti (tarkemmat ohjeet Moodlessa). Opintojaksoon saattaa sisältyä myös ryhmässä tehtäviä osioita. Kokeen arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan, kotitehtävien aktiivista tekemistä (vähintään 30%) sekä kurssikokeeseen osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois.
Harjoitustehtävillä saa lisäpisteitä oheisen taulukon mukaan:
yli 30% : 1
yli 50%: 2
yli 70% : 3
yli 90% : 4
Harjoitustehtäväpisteet eivät vaikuta kurssin läpipääsyyn vaan niillä voi korottaa arvosanaa. Lopullinen arvosana määräytyy koepisteiden ja harjoitustehtäväpisteiden yhteismäärästä sekä osallistumisaktiivisuudesta. Harjoitustehtäväpisteitä ei huomioida enää uusinta- ja korotustenttien yhteydessä.
Arviointikriteeri -hylätty(0):
Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.

Arviointiasteikko

0-5

Opiskelumuodot ja opetusmenetelmät

lähiopetus
etäopetus
ryhmätyö
harjoitukset
kurssikoe
uusintatentti

Oppimateriaalit

Opettajan jakama materiaali
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS-laskin.

Opiskelijan ajankäyttö ja kuormitus

Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-lähi/etäopetuksesta, jossa opettajaja mukana
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, STACK-tehtävät, opetusvideot)
-kokeesta
Opettajan pitämiä oppitunteja on n. 27-30 h.

Sisällön jaksotus

-regressio
-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät

Lisätietoja opiskelijoille

Opetus alkaa 8.1. lukujärjestyksen mukaisesti.
Opintojaksoon on Moodle-toteutus. Oppitunnit pyritään pitämään lähiopetuksena etämahdollisuuden kanssa. Etäopetuksen Zoom-linkki on annettu Moodlessa. Tarvittaessa oppitunnit pidetään kokonaan etänä.

Ilmoittautumisaika

01.07.2023 - 29.10.2023

Ajoitus

23.10.2023 - 16.12.2023

Laajuus

3 op

Toteutustapa

Lähiopetus

Yksikkö

TAMK Matematiikka ja fysiikka

Toimipiste

TAMK Pääkampus

Opetuskielet
  • Suomi
Koulutus
  • Rakennustekniikan tutkinto-ohjelma
Opettaja
  • Jukka Suominen
Vastuuhenkilö

Jukka Suominen

Ryhmät
  • 23AI371
    Kiinteistönpitotekniikka ja korjausrakentaminen, monimuoto

Tavoitteet (OJ)

Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa

Sisältö (OJ)

Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.

Esitietovaatimukset (OJ)

Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.

Arviointikriteerit, tyydyttävä (1-2) (OJ)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit, hyvä (3-4) (OJ)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit, kiitettävä (5) (OJ)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Aika ja paikka

Ajankohdat ja paikat ilmoitettu TUNIMoodlessa.

Tenttien ja uusintatenttien ajankohdat

Opintojakson koe pidetään 16.12.2023 klo 12.15-15.00 juhlasalissa D1-04.
1. uusinta / korotus 01.02.2024 klo 11.00-13.00 (14.00) luokassa B2-37.
2. uusinta / korotus 07.03.2024 klo 07.30-10.00 luokassa B2-25.

Ilmoittautuminen uusintakokeisiin viimeistään koetta edeltävänä sunnuntaina sähköpostitse.
Hyväksyttyä arvosanaa voi yrittää korottaa vain kerran.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.

Arviointimenetelmät ja arvioinnin perusteet

Opintojakso arvioidaan asteikolla 0-5.

Kotitehtävistä on mahdollista saada 1 piste / palautuskerta, yhteensä 6 pistettä. Kokeen maksimipistemäärä 34 pistettä. Yhteispistemäärä on täten 40 pistettä.

Arvosana määräytyy kotitehtävien ja kokeen yhteispistemäärän perusteella seuraavasti:

0 pistettä, arvosana 0
10 pistettä, arvosana 1
16 pistettä, arvosana 2
22 pistettä, arvosana 3
28 pistettä, arvosana 4
34 pistettä, arvosana 5

Arviointiasteikko

0-5

Opiskelumuodot ja opetusmenetelmät

- lähiopetus (ja itseopiskelu)
- tuntitehtävät, kotitehtävät
- koe

Oppimateriaalit

Opettajan jakama materiaali Moodlessa
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS-laskin.

Opiskelijan ajankäyttö ja kuormitus

Opiskelijan keskimääräinen työmäärä on 81 h, joka koostuu:
-lähiopetuksesta
-itsenäisestä työskentelystä (mm. kotitehtävät, opetusvideot)
-kokeesta
Opettajan pitämiä lähitunteja koe mukaan lukien on 24 h.

Sisällön jaksotus

-erotusosamäärä ja derivaatta
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät
-regressio

Toteutuksen valinnaiset suoritustavat

-

Harjoittelu- ja työelämäyhteistyö

-

Kansainvälisyys

-

Lisätietoja opiskelijoille

Opetus alkaa 14.10.2023 lukujärjestyksen mukaisesti.

Arviointikriteerit - hylätty (0) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Katso kohta "Arviointimenetelmät ja arvioinnin perusteet".

Arviointikriteerit - tyydyttävä (1-2) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Katso kohta "Arviointimenetelmät ja arvioinnin perusteet".

Arviointikriteerit - hyvä (3-4) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Katso kohta "Arviointimenetelmät ja arvioinnin perusteet".

Arviointikriteerit - kiitettävä (5) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Katso kohta "Arviointimenetelmät ja arvioinnin perusteet".

Ilmoittautumisaika

02.07.2023 - 31.08.2023

Ajoitus

28.08.2023 - 15.10.2023

Laajuus

3 op

Toteutustapa

Lähiopetus

Yksikkö

Sähkö- ja automaatiotekniikka

Toimipiste

TAMK Pääkampus

Opetuskielet
  • Suomi
Paikat

0 - 40

Koulutus
  • Sähkö- ja automaatiotekniikan tutkinto-ohjelma
Opettaja
  • Ulla Miekkala
Vastuuhenkilö

Ulla Miekkala

Ryhmät
  • 23I231A
    Sähkö- ja automaatiotekniikka

Tavoitteet (OJ)

Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa

Sisältö (OJ)

Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.

Esitietovaatimukset (OJ)

Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.

Arviointikriteerit, tyydyttävä (1-2) (OJ)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit, hyvä (3-4) (OJ)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit, kiitettävä (5) (OJ)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Aika ja paikka

Toteutus kestää 1. periodin ja opetus viikoittain:
ke 11-14 B4-27 (n. 40 mahtuu lähiopetukseen, loput voi osallistua zoomin välityksellä)
pe 11-14 B4-27 (n. 40 mahtuu lähiopetukseen, loput voi osallistua zoomin välityksellä)

Tenttien ja uusintatenttien ajankohdat

Opintojakson välikokeet pidetään
1. välikoe pe 22.9. klo 11-13 (alustava aika, voi tulla muutoksia).
2. välikoe pe 13.10. klo 11-13 (alustava aika, voi tulla muutoksia).
Uusintaan osallistuminen edellyttää arvosanaa nolla.
1. uusintakoe ke 22.11.2023 klo 16-19 B4-kerros
2. uusintakoe/ korotus ti 12.12.2023 klo 16-19 B4-kerros
Hyväksyttyä arvosanaa voi korottaa 2. uusintakokeessa.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Uusintakokeeseen ja korotukseen ilmoittaudutaan TAMKin tenttijärjestelmän kautta.

Arviointimenetelmät ja arvioinnin perusteet

Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan kahdella välikokeella, nettitehtävillä ja viikoittain tarkastettavilla harjoitustehtävillä.

Arvosteluun vaikuttavat nettitehtävät 15 %, välikokeet yhteensä 75 % ja kotitehtävät 10 %. Kokeiden arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä osallistumista koko opintojakson ajan, nettitehtävien ja kotitehtävien tekoa sekä kumpaankin välikokeeseen osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois. Arvosanan 1 saa pistemäärällä, joka on 30 % kurssin eri arviointimuotojen yhteenlasketusta maksimipistemäärästä.

Uusinta- ja korotus:
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä-, nettitehtävä- eikä välikoepisteet.

Arviointiasteikko

0-5

Opiskelumuodot ja opetusmenetelmät

Lähi- ja etäopetus yhdessä biotuotetekniikan ryhmän 23BIOTA kanssa. N. 40 mahtuu lähiopetukseen, loput voi osallistua opetukseen zoomin välityksellä.
Itsenäinen opiskelu, tuntiharjoitukset ja kotitehtävät, videomateriaalit, nettitehtävät, 2 välikoetta koululla.

Oppimateriaalit

Opettajan Moodlessa jakama materiaali (opetusmonisteet, videot, STACK-tehtävät)
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS/ TI-nspire CX II CAS -laskin.

Opiskelijan ajankäyttö ja kuormitus

Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-opetuksesta, jossa opettaja mukana (lähi- tai Zoom-tunnit)
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, nettitehtävät, opetusvideot)
-kokeista
Opettajan pitämiä lähitunteja on n. 30 h

Sisällön jaksotus

-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät

Lisätietoja opiskelijoille

Opetus alkaa viikolla 35 lukujärjestyksen mukaisesti eli ke 30.8.2023
Opintojaksoon on Moodle-toteutus.

Ilmoittautumisaika

07.06.2023 - 04.09.2023

Ajoitus

28.08.2023 - 15.10.2023

Laajuus

3 op

Toteutustapa

Lähiopetus

Yksikkö

TAMK Matematiikka ja fysiikka

Toimipiste

TAMK Pääkampus

Opetuskielet
  • Suomi
Koulutus
  • Biotuotetekniikan tutkinto-ohjelma
Opettaja
  • Ulla Miekkala
Vastuuhenkilö

Ulla Miekkala

Ryhmät
  • 23BIOTA
    Biotuotetekniikan tutkinto-ohjelma, kevät 2023

Tavoitteet (OJ)

Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa

Sisältö (OJ)

Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.

Esitietovaatimukset (OJ)

Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.

Arviointikriteerit, tyydyttävä (1-2) (OJ)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit, hyvä (3-4) (OJ)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit, kiitettävä (5) (OJ)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Aika ja paikka

Toteutus kestää 1. periodin ja opetus viikoittain:
ke 11-14 B4-27 (n. 40 mahtuu lähiopetukseen, loput voi osallistua zoomin välityksellä)
pe 11-14 B4-27 (n. 40 mahtuu lähiopetukseen, loput voi osallistua zoomin välityksellä)

Tenttien ja uusintatenttien ajankohdat

Opintojakson välikokeet pidetään
1. välikoe pe 22.9. klo 11-13 (alustava aika, voi tulla muutoksia).
2. välikoe pe 13.10. klo 11-13 (alustava aika, voi tulla muutoksia).
Uusintaan osallistuminen edellyttää arvosanaa nolla.
1. uusintakoe ke 22.11.2023 klo 16-19 B4-kerros
2. uusintakoe/ korotus ti 12.12.2023 klo 16-19 B4-kerros
Hyväksyttyä arvosanaa voi korottaa 2. uusintakokeessa.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Uusintakokeeseen ja korotukseen ilmoittaudutaan TAMKin tenttijärjestelmän kautta.

Arviointimenetelmät ja arvioinnin perusteet

Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan kahdella välikokeella, nettitehtävillä ja viikoittain tarkastettavilla harjoitustehtävillä.

Arvosteluun vaikuttavat nettitehtävät 15 %, välikokeet yhteensä 75 % ja kotitehtävät 10 %. Kokeiden arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä osallistumista koko opintojakson ajan, nettitehtävien ja kotitehtävien tekoa sekä kumpaankin välikokeeseen osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois. Arvosanan 1 saa pistemäärällä, joka on 30 % kurssin eri arviointimuotojen yhteenlasketusta maksimipistemäärästä.

Uusinta- ja korotus:
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä-, nettitehtävä- eikä välikoepisteet.

Arviointiasteikko

0-5

Opiskelumuodot ja opetusmenetelmät

Lähi- ja etäopetus yhdessä sähkö- ja automaatiotekniikan ryhmän 23I231A kanssa. N. 40 mahtuu lähiopetukseen, loput voi osallistua opetukseen zoomin välityksellä.
Itsenäinen opiskelu, tuntiharjoitukset ja kotitehtävät, videomateriaalit, nettitehtävät, 2 välikoetta koululla.

Oppimateriaalit

Opettajan Moodlessa jakama materiaali (opetusmonisteet, videot, STACK-tehtävät)
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS/ TI-nspire CX II CAS -laskin.

Opiskelijan ajankäyttö ja kuormitus

Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-opetuksesta, jossa opettaja mukana (lähi- tai Zoom-tunnit)
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, nettitehtävät, opetusvideot)
-kokeista
Opettajan pitämiä lähitunteja on n. 30 h

Sisällön jaksotus

-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät

Lisätietoja opiskelijoille

Opetus alkaa viikolla 35 lukujärjestyksen mukaisesti eli ke 30.8.2023
Opintojaksoon on Moodle-toteutus.

Ilmoittautumisaika

01.08.2023 - 28.08.2023

Ajoitus

24.08.2023 - 14.10.2023

Laajuus

3 op

Toteutustapa

Lähiopetus

Yksikkö

TAMK Matematiikka ja fysiikka

Toimipiste

TAMK Pääkampus

Opetuskielet
  • Suomi
Koulutus
  • Talotekniikan tutkinto-ohjelma, LVI-talotekniikka
Opettaja
  • Pia Ruokonen-Kaukolinna
Vastuuhenkilö

Pia Ruokonen-Kaukolinna

Ryhmät
  • 23AI253
    LVI-talotekniikka, monimuotototeutus
  • 23YIRAKE
    Rakentaminen, ylempi amk

Tavoitteet (OJ)

Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa

Sisältö (OJ)

Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.

Esitietovaatimukset (OJ)

Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.

Arviointikriteerit, tyydyttävä (1-2) (OJ)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit, hyvä (3-4) (OJ)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit, kiitettävä (5) (OJ)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Aika ja paikka

Aloitus torstaina 24.8. klo 17.15 Katso Zoom-linkki Moodlesta. Opettaja laittaa vielä ennen kurssin alkua sähköpostia ilmoittautuneille.

Itsenäinen opiskelu viikoittain annetusta aiheesta, opettaja tavattavissa kerran viikossa Zoomin kautta ja silloin voi kysyä viikon aiheesta ja viikkotehtävistä. Kurssin lopussa koe TAMKilla.

Tenttien ja uusintatenttien ajankohdat

Opintojakson koe pidetään 14.10.2023. klo 11-14 TAMKIlla tilassa D1-04 (juhlasali).

Koko kurssin uusintakoe järjestetään seuraavasti:
1. uusintakoe ke 22.11.2023 klo 17-20 (B4-27 tai B4-18))
2. uusintakoe/ korotus ti 12.12.2023 klo 17-20 (B4-18 tai B4-27)

Uusinta- ja korotus:
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä-, nettitehtävä- eikä aiemmat koepisteet.
Uusintakokeisiin ilmoittaudutaan Pakin kautta.

Arviointimenetelmät ja arvioinnin perusteet

Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan viikottaisia harjoitustehtäviä (harjoitusmonisteen tehtävät + STACK-tehtävät) tekemällä ja loppukokeella. Viikoittaisilla harjoitustehtävillä voi koota 1/3 kokonaispisteistä ja loput loppukokeessa. Hyväksyttyyn suoritukseen riittää 1/3 kokonaispisteistä. Kokeiden arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys.

Kurssiarvioinnissa käytetään jatkuvaa arviointia, jossa osa kurssipisteistä kerätään kurssin suorituksen aikana ja loput kokeella. Tästä syystä kurssilla edetään tietyssä viikkorytmissä ja tehtäviä palautetaan tietyllä viikolla. Tehtäviä ei voi palauttaa enää jälkikäteen.

Arviointiasteikko

0-5

Opiskelumuodot ja opetusmenetelmät

Verkkokurssi: Itsenäinen opiskelu, videomateriaalit, itsenäisesti tehtävät harjoitukset (palautettavat viikkotehtävät + automaattisesti arvioitavat STACK-tehtävät), viikoittain opettajan kontaktitunti etänä, koe TAMKilla. Ajat ilmoitettu Moodlessa.

Yleisperiaate kurssilla on se, että viikoittain avautuu itseopiskeltava aihe ja siihen kotitehtävät, joita on kahdenlaisia (perinteiset paperille tehtävät harjoitukset ja Stack-tehtävät). Käytössä on runsaasti videomateriaalia. Kerran viikossa on aina vapaaehtoinen viikkotapaaminen zoomin kautta ja siellä käydään tarvittaessa kotitehtäviä läpi sekä voi muutoinkin kysellä epäselvistä asioista.

Oppimateriaalit

Opintojakson oppimateriaalina on sähköistä oppimateriaalia, opetusvideoita ja STACK-tehtäviä, jotka opiskelija löytää kurssin Moodle-alustalta

Kaavasto: Tammertekniikan Tekniikan kaavasto tai MAOL
Laskinsuositus: TI-nspire CX CAS/ TI-nspire CX II CAS -laskin.

Opiskelijan ajankäyttö ja kuormitus

Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
- itsenäisestä työskentelystä (mm. teorian ja harjoitusten opiskelu oppimateriaalin ja opetusvideoiden avulla, viikkotehtävät, nettitehtävät)
- viikoittaisista tapaamisista, jossa opettajalta voi Zoomin kautta kysyä viikon aiheesta (ei pakollinen) .
- kokeesta

Sisällön jaksotus

-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät

Toteutuksen valinnaiset suoritustavat

AHOT-menettely, jossa opiskelija osoittaa osaamisensa yhdellä kokeella. AHOToinnista tulee ilmoittaa opettajlle viimeistään viikon kuluttua opintojakson aloituksesta, jolloin sovitaan yhdessä koeaika.

Lisätietoja opiskelijoille

Kurssi alkaa torstaina 24.8.2023. Tällöin pidetään kurssin aloitusinfo, joka myös nauhoitetaan. Osallistuminen siihen ei ole pakollista.
Opintojaksoon on Moodle-toteutus, joka ei näy automaattiseti. Tarvittavat tiedot ja linkit lähetetään sähköpostiin viimeistään 2 päivää ennen kurssin alkua.

Kurssi on yhteinen toteutuksille 5N00EG74-3084 ja 5N00EG74-3086.

Ilmoittautumisaika

02.07.2023 - 18.08.2023

Ajoitus

24.08.2023 - 14.10.2023

Laajuus

3 op

Toteutustapa

Lähiopetus

Yksikkö

TAMK Matematiikka ja fysiikka

Toimipiste

TAMK Pääkampus

Opetuskielet
  • Suomi
Koulutus
  • Konetekniikan tutkinto-ohjelma
Opettaja
  • Pia Ruokonen-Kaukolinna
Vastuuhenkilö

Pia Ruokonen-Kaukolinna

Ryhmät
  • 23AI112
    Konetekniikka 2023, monimuoto

Tavoitteet (OJ)

Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa

Sisältö (OJ)

Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.

Esitietovaatimukset (OJ)

Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.

Arviointikriteerit, tyydyttävä (1-2) (OJ)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit, hyvä (3-4) (OJ)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit, kiitettävä (5) (OJ)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Aika ja paikka

Aloitus torstaina 24.8. klo 17.15 Katso Zoom-linkki Moodlesta. Opettaja laittaa vielä ennen kurssin alkua sähköpostia ilmoittautuneille.

Itsenäinen opiskelu viikoittain annetusta aiheesta, opettaja tavattavissa kerran viikossa Zoomin kautta ja silloin voi kysyä viikon aiheesta ja viikkotehtävistä. Kurssin lopussa koe TAMKilla.

Tenttien ja uusintatenttien ajankohdat

Opintojakson koe pidetään 14.10.2023. klo 11-14 TAMKIlla tilassa D1-04 (juhlasali).

Koko kurssin uusintakoe järjestetään seuraavasti:
1. uusintakoe ke 22.11.2023 klo 17-20 (B4-27 tai B4-18))
2. uusintakoe/ korotus ti 12.12.2023 klo 17-20 (B4-18 tai B4-27)

Uusinta- ja korotus:
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä-, nettitehtävä- eikä aiemmat koepisteet.
Uusintakokeisiin ilmoittaudutaan Pakin kautta.

Arviointimenetelmät ja arvioinnin perusteet

Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan viikottaisia harjoitustehtäviä (harjoitusmonisteen tehtävät + STACK-tehtävät) tekemällä ja loppukokeella. Viikoittaisilla harjoitustehtävillä voi koota 1/3 kokonaispisteistä ja loput loppukokeessa. Hyväksyttyyn suoritukseen riittää 1/3 kokonaispisteistä. Kokeiden arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys.

Kurssiarvioinnissa käytetään jatkuvaa arviointia, jossa osa kurssipisteistä kerätään kurssin suorituksen aikana ja loput kokeella. Tästä syystä kurssilla edetään tietyssä viikkorytmissä ja tehtäviä palautetaan tietyllä viikolla. Tehtäviä ei voi palauttaa enää jälkikäteen.

Arviointiasteikko

0-5

Opiskelumuodot ja opetusmenetelmät

Verkkokurssi: Itsenäinen opiskelu, videomateriaalit, itsenäisesti tehtävät harjoitukset (palautettavat viikkotehtävät + automaattisesti arvioitavat STACK-tehtävät), viikoittain opettajan kontaktitunti etänä, koe TAMKilla. Ajat ilmoitettu Moodlessa.

Yleisperiaate kurssilla on se, että viikoittain avautuu itseopiskeltava aihe ja siihen kotitehtävät, joita on kahdenlaisia (perinteiset paperille tehtävät harjoitukset ja Stack-tehtävät). Käytössä on runsaasti videomateriaalia. Kerran viikossa on aina vapaaehtoinen viikkotapaaminen zoomin kautta ja siellä käydään tarvittaessa kotitehtäviä läpi sekä voi muutoinkin kysellä epäselvistä asioista.

Oppimateriaalit

Opintojakson oppimateriaalina on sähköistä oppimateriaalia, opetusvideoita ja STACK-tehtäviä, jotka opiskelija löytää kurssin Moodle-alustalta

Kaavasto: Tammertekniikan Tekniikan kaavasto tai MAOL
Laskinsuositus: TI-nspire CX CAS/ TI-nspire CX II CAS -laskin.

Opiskelijan ajankäyttö ja kuormitus

Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
- itsenäisestä työskentelystä (mm. teorian ja harjoitusten opiskelu oppimateriaalin ja opetusvideoiden avulla, viikkotehtävät, nettitehtävät)
- viikoittaisista tapaamisista, jossa opettajalta voi Zoomin kautta kysyä viikon aiheesta (ei pakollinen) .
- kokeesta

Sisällön jaksotus

-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät

Toteutuksen valinnaiset suoritustavat

AHOT-menettely, jossa opiskelija osoittaa osaamisensa yhdellä kokeella. AHOToinnista tulee ilmoittaa opettajlle viimeistään viikon kuluttua opintojakson aloituksesta, jolloin sovitaan yhdessä koeaika.

Lisätietoja opiskelijoille

Kurssi alkaa torstaina 24.8.2023. Tällöin pidetään kurssin aloitusinfo, joka myös nauhoitetaan. Osallistuminen siihen ei ole pakollista.
Opintojaksoon on Moodle-toteutus, joka ei näy automaattiseti. Tarvittavat tiedot ja linkit lähetetään sähköpostiin viimeistään 2 päivää ennen kurssin alkua.

Kurssi on yhteinen toteutuksille 5N00EG74-3084 ja 5N00EG74-3086.

Ilmoittautumisaika

02.12.2022 - 13.01.2023

Ajoitus

13.01.2023 - 10.03.2023

Laajuus

3 op

Toteutustapa

Lähiopetus

Yksikkö

Sähkö- ja automaatiotekniikka

Toimipiste

TAMK Pääkampus

Opetuskielet
  • Suomi
Paikat

0 - 40

Koulutus
  • Sähkö- ja automaatiotekniikan tutkinto-ohjelma
Opettaja
  • Jukka Suominen
Vastuuhenkilö

Jukka Suominen

Ryhmät
  • 22AI231
    Sähkö- ja automaatiotekniikka, aikuiset

Tavoitteet (OJ)

Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa

Sisältö (OJ)

Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.

Esitietovaatimukset (OJ)

Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.

Arviointikriteerit, tyydyttävä (1-2) (OJ)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit, hyvä (3-4) (OJ)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit, kiitettävä (5) (OJ)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Aika ja paikka

Ajankohdat ja paikat ilmoitettu TUNIMoodlessa.

Tenttien ja uusintatenttien ajankohdat

Opintojakson koe pidetään 10.03.2023 klo 11.15-14.00 luokassa B2-25
1. uusinta / korotus 31.03.2023 klo 17.00-20.00 luokassa B2-25
2. uusinta / korotus 21.04.2023 klo 17.00-20.00 luokassa B2-25

Ilmoittautuminen uusintakokeisiin viimeistään koetta edeltävänä sunnuntaina sähköpostitse.
Hyväksyttyä arvosanaa voi yrittää korottaa vain kerran.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.

Arviointimenetelmät ja arvioinnin perusteet

Opintojakso arvioidaan asteikolla 0-5.

Kotitehtävistä on mahdollista saada 1 piste / palautuskerta, yhteensä 6 pistettä. Kokeen maksimipistemäärä 34 pistettä. Yhteispistemäärä on täten 40 pistettä.

Arvosana määräytyy kotitehtävien ja kokeen yhteispistemäärän perusteella seuraavasti:

0 pistettä, arvosana 0
10 pistettä, arvosana 1
16 pistettä, arvosana 2
22 pistettä, arvosana 3
28 pistettä, arvosana 4
34 pistettä, arvosana 5

Arviointiasteikko

0-5

Opiskelumuodot ja opetusmenetelmät

- lähiopetus (ja itseopiskelu)
- tuntitehtävät, kotitehtävät
- koe

Oppimateriaalit

Opettajan jakama materiaali Moodlessa
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS-laskin.

Opiskelijan ajankäyttö ja kuormitus

Opiskelijan keskimääräinen työmäärä on 81 h, joka koostuu:
-lähiopetuksesta
-itsenäisestä työskentelystä (mm. kotitehtävät, opetusvideot)
-kokeesta
Opettajan pitämiä lähitunteja koe mukaan lukien on 21 h.

Sisällön jaksotus

-erotusosamäärä ja derivaatta
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät
-regressio

Toteutuksen valinnaiset suoritustavat

-

Harjoittelu- ja työelämäyhteistyö

-

Kansainvälisyys

-

Lisätietoja opiskelijoille

Opetus alkaa 13.01.2023 lukujärjestyksen mukaisesti.

Arviointikriteerit - hylätty (0) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Katso kohta "Arviointimenetelmät ja arvioinnin perusteet".

Arviointikriteerit - tyydyttävä (1-2) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Katso kohta "Arviointimenetelmät ja arvioinnin perusteet".

Arviointikriteerit - hyvä (3-4) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Katso kohta "Arviointimenetelmät ja arvioinnin perusteet".

Arviointikriteerit - kiitettävä (5) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Katso kohta "Arviointimenetelmät ja arvioinnin perusteet".

Ilmoittautumisaika

02.12.2022 - 03.01.2023

Ajoitus

09.01.2023 - 24.02.2023

Laajuus

3 op

Toteutustapa

Lähiopetus

Yksikkö

TAMK Matematiikka ja fysiikka

Toimipiste

TAMK Pääkampus

Opetuskielet
  • Suomi
Koulutus
  • Rakennustekniikan tutkinto-ohjelma
Opettaja
  • Pia Ruokonen-Kaukolinna
Vastuuhenkilö

Pia Ruokonen-Kaukolinna

Ryhmät
  • 22RTA
    Rakennustekniikka

Tavoitteet (OJ)

Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa

Sisältö (OJ)

Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.

Esitietovaatimukset (OJ)

Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.

Arviointikriteerit, tyydyttävä (1-2) (OJ)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit, hyvä (3-4) (OJ)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit, kiitettävä (5) (OJ)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Tenttien ja uusintatenttien ajankohdat

Opintojakso suoritetaan viikottaisilla harjoitustehtävillä, nettitehtävillä ja kokeella.
Koe 24.2.2023 (Alustava aika, johon voi tulla muutoksia, joista tiedotetaan tunneilla ja sähköpostilla)

Koko kurssin uusintakoe järjestetään seuraavasti:

1. uusintakoe 29.3.2023 klo 17-20
2. uusintakoe/ korotus 12.4.2023 klo 17-20

Uusinnat ja korotukset ovat vain ja ainoastaan tässä ilmoitettuna aikana, ei siis myöhemmin esim. seuraavana vuonna.
Uusintakokeeseen ja korotukseen ilmoittaudutaan Pakin kautta..
Uusintaan osallistuminen edellyttää arvosanaa 0.

Yleiseti kokeesta:
Sairastapauksissa vaaditaan lääkärintodistus.
Poissaolo kokeesta vastaa hylättyä suoritusta.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.

Arviointimenetelmät ja arvioinnin perusteet

Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan kokeella/kokeilla, nettitehtävillä ja viikoittain tarkastettavilla harjoitustehtävillä,

Arvosteluun vaikuttavat nettitehtävät 15 %, kotitehtävät 10 % ja koe 75 %. Kokeen arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä osallistumista kurssin eri työmuotoihin koko opintojakson ajan (opetus, kotitehtävät, nettitehtävät ja koe) . Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois. Arvosanan 1 saa pistemäärällä, joka on 30 % kurssin eri arviointimuotojen yhteenlasketusta maksimipistemäärästä.


Uusinta- ja korotus:
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä-, nettitehtävä- eikä aiemmat koepisteet.


Arviointikriteeri - hylätty (0)
Opiskelija osallistuu säännöllisesti opetukseen ja sen työmuotoihin, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Mikäli edellä mainitut kriteerit eivät täyty, niin opiskelija poistetaan toteutukselta. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.

Arviointiasteikko

0-5

Opiskelumuodot ja opetusmenetelmät

Etäopetus zoomin kautta, itsenäinen opiskelu, videomateriaalit, tuntiharjoitukset ja kotitehtävät, nettitehtävät (STACK-tehtävät), tentti
Zoom-linkki löytyy kurssin Moodlesta.

Oppimateriaalit

Opettajan Moodlessa jakama materiaali (pdf-materiaalit, videot, interaktiiviset tehtävät)
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS/ TI-nspire CX II CAS -laskin.

Opiskelijan ajankäyttö ja kuormitus

Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
- etäopetuksesta, jossa opettajaja mukana
- mahdollisista ryhmätöistä (opettaja ei ole mukana)
- itsenäisestä työskentelystä (mm. kotitehtävät, nettitehtävät, opetusvideot)
- kokeista
Opettajan pitämiä lähitunteja on n. 30 h

Sisällön jaksotus

Sisällön jaksotus on suuntaa antava. Osa opsissa mainituista kokonaisuuksista on tarkoitus suorittaa itsenäisenä opiskeluna ja/tai ryhmätöinä.

-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät

Lisätietoja opiskelijoille

Opetus alkaa lukujärjestyksen mukaisesti viikolla 2.
Opintojaksoon tulee Moodle-toteutus. Toteutus ei näy automaattisesti, vaan se täytyy hakea kurssitunnuksella. Opettaja lähettää ilmoittautuneille ennen kurssin alkua Moodle-avaimen sähköpostilla. Etäopetuksen Zoom-linkki löytyy Moodlesta.

Toteutukset 5N00EG74-3054 (22RTA) ja 5N00EG74-3085 (22RTD) opetetaan yhdessä ja näillä on yhteinen Moodle, joka on nimetty toteutuksen 5N00EG74-3054 mukaan.

Arviointikriteerit - hylätty (0) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.

Arviointikriteerit - tyydyttävä (1-2) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti, numeerisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia.Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä on vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit - hyvä (3-4) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit - kiitettävä (5) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut sekä käyttää oikeita matemaattisia merkintöjä. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Ilmoittautumisaika

02.12.2022 - 10.01.2023

Ajoitus

09.01.2023 - 05.03.2023

Laajuus

3 op

Toteutustapa

Lähiopetus

Yksikkö

Sähkö- ja automaatiotekniikka

Toimipiste

TAMK Pääkampus

Opetuskielet
  • Suomi
Paikat

0 - 40

Koulutus
  • Sähkö- ja automaatiotekniikan tutkinto-ohjelma
Opettaja
  • Ulla Miekkala
Vastuuhenkilö

Ulla Miekkala

Ryhmät
  • 22I231B
    Sähkö- ja automaatiotekniikka

Tavoitteet (OJ)

Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa

Sisältö (OJ)

Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.

Esitietovaatimukset (OJ)

Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.

Arviointikriteerit, tyydyttävä (1-2) (OJ)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit, hyvä (3-4) (OJ)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit, kiitettävä (5) (OJ)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Aika ja paikka

ti 11-14 B4-27 (n. puolet mahtuu lähiopetukseen, toinen puoli voi osallistua zoomin välityksellä)
to 8-11 B4-27 (n. puolet mahtuu lähiopetukseen, toinen puoli voi osallistua zoomin välityksellä)

Tenttien ja uusintatenttien ajankohdat

Opintojakson välikokeet pidetään
1. välikoe ti 7.2. klo 11-13 juhlasali (D1-04) (alustava aika, voi tulla muutoksia).
2. välikoe to 23.2. klo 9-11 juhlasali (D1-04) (alustava aika, voi tulla muutoksia).
Uusintaan osallistuminen edellyttää arvosanaa nolla.
1. uusintakoe 29.3.2023 klo 17.00-20.00 (paikka ilmoitetaan ennen tenttiä)
2. uusintakoe/ korotus 12.4.2023 klo 17.00-20.00 (paikka ilmoitetaan ennen tenttiä)
Hyväksyttyä arvosanaa voi korottaa 2. uusintakokeessa.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Uusintakokeeseen ja korotukseen ilmoittaudutaan TAMKin tenttijärjestelmän kautta.

Arviointimenetelmät ja arvioinnin perusteet

Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan välikokeilla (2 kpl), nettitehtävillä ja viikoittain tarkastettavilla harjoitustehtävillä,

Arvostelun vaikuttavat nettitehtävät 15 %, välikokeet yhteensä 75 % ja kotitehtävät 10 %. Kokeiden arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä osallistumista koko opintojakson ajan, nettitehtävien ja kotitehtävien tekoa sekä välikokeisiin osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois. Arvosanan 1 saa pistemäärällä, joka on 30 % kurssin eri arviointimuotojen yhteenlasketusta maksimipistemäärästä.

Uusinta- ja korotus:
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä-, nettitehtävä- eikä välikoepisteet.

Arviointiasteikko

0-5

Opiskelumuodot ja opetusmenetelmät

Lähi- ja etäopetus yhdessä konetekniikan ryhmän 22I112B kanssa. N. puolet mahtuu lähiopetukseen, toinen puoli voi osallistua opetukseen zoomin välityksellä.
Itsenäinen opiskelu, tuntiharjoitukset ja kotitehtävät, videomateriaalit, nettitehtävät, 2 välikoetta koululla.

Oppimateriaalit

Opettajan Moodlessa jakama materiaali (opetusmonisteet, videot, STACK-tehtävät)
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS/ TI-nspire CX II CAS -laskin.

Opiskelijan ajankäyttö ja kuormitus

Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-opetuksesta, jossa opettaja mukana (lähi- tai Zoom-tunnit)
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, nettitehtävät, opetusvideot)
-kokeista
Opettajan pitämiä lähitunteja on n. 30 h

Sisällön jaksotus

-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät

Lisätietoja opiskelijoille

Opetus alkaa viikolla 2 lukujärjestyksen mukaisesti eli ti 10.1.2023
Opintojaksoon on Moodle-toteutus.

Ilmoittautumisaika

02.12.2022 - 11.01.2023

Ajoitus

09.01.2023 - 05.03.2023

Laajuus

3 op

Toteutustapa

Lähiopetus

Yksikkö

TAMK Matematiikka ja fysiikka

Toimipiste

TAMK Pääkampus

Opetuskielet
  • Suomi
Koulutus
  • Konetekniikan tutkinto-ohjelma
Opettaja
  • Ulla Miekkala
Vastuuhenkilö

Ulla Miekkala

Ryhmät
  • 22I112A
    Konetekniikka 2022

Tavoitteet (OJ)

Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa

Sisältö (OJ)

Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.

Esitietovaatimukset (OJ)

Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.

Arviointikriteerit, tyydyttävä (1-2) (OJ)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit, hyvä (3-4) (OJ)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit, kiitettävä (5) (OJ)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Aika ja paikka

ke 8-11 B4-27 (n. puolet mahtuu lähiopetukseen, toinen puoli voi osallistua zoomin välityksellä)
pe 11-14 B4-18 (n. puolet mahtuu lähiopetukseen, toinen puoli voi osallistua zoomin välityksellä)
(perjantain tunnit kahdella ensimmäisellä opetusviikolla klo 13-16)

Tenttien ja uusintatenttien ajankohdat

Opintojakson välikokeet pidetään
1. välikoe pe 3.2. klo 11-13 juhlasali (D1-04) (alustava aika, voi tulla muutoksia).
2. välikoe pe 24.2. klo 11-13 juhlasali (D1-04) (alustava aika, voi tulla muutoksia).
Uusintaan osallistuminen edellyttää arvosanaa nolla.
1. uusintakoe 29.3.2023 klo 17.00-20.00 (paikka ilmoitetaan ennen tenttiä)
2. uusintakoe/ korotus 12.4.2023 klo 17.00-20.00 (paikka ilmoitetaan ennen tenttiä)
Hyväksyttyä arvosanaa voi korottaa 2. uusintakokeessa.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Uusintakokeeseen ja korotukseen ilmoittaudutaan TAMKin tenttijärjestelmän kautta.

Arviointimenetelmät ja arvioinnin perusteet

Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan välikokeilla (2 kpl), nettitehtävillä ja viikoittain tarkastettavilla harjoitustehtävillä,

Arvostelun vaikuttavat nettitehtävät 15 %, välikokeet yhteensä 75 % ja kotitehtävät 10 %. Kokeiden arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä osallistumista koko opintojakson ajan, nettitehtävien ja kotitehtävien tekoa sekä välikokeisiin osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois. Arvosanan 1 saa pistemäärällä, joka on 30 % kurssin eri arviointimuotojen yhteenlasketusta maksimipistemäärästä.

Uusinta- ja korotus:
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä-, nettitehtävä- eikä välikoepisteet.

Arviointiasteikko

0-5

Opiskelumuodot ja opetusmenetelmät

Lähi- ja etäopetus yhdessä konetekniikan ryhmän 22I112C kanssa. N. puolet mahtuu lähiopetukseen, toinen puoli voi osallistua opetukseen zoomin välityksellä.
Itsenäinen opiskelu, tuntiharjoitukset ja kotitehtävät, videomateriaalit, nettitehtävät, 2 välikoetta koululla.

Oppimateriaalit

Opettajan Moodlessa jakama materiaali (opetusmonisteet, videot, STACK-tehtävät)
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS/ TI-nspire CX II CAS -laskin.

Opiskelijan ajankäyttö ja kuormitus

Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-opetuksesta, jossa opettaja mukana (lähi- tai Zoom-tunnit)
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, nettitehtävät, opetusvideot)
-kokeista
Opettajan pitämiä lähitunteja on n. 30 h

Sisällön jaksotus

-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät

Lisätietoja opiskelijoille

Opetus alkaa viikolla 2 lukujärjestyksen mukaisesti eli ke 11.1.2023
Opintojaksoon on Moodle-toteutus.

Ilmoittautumisaika

02.12.2022 - 11.01.2023

Ajoitus

09.01.2023 - 05.03.2023

Laajuus

3 op

Toteutustapa

Lähiopetus

Yksikkö

TAMK Matematiikka ja fysiikka

Toimipiste

TAMK Pääkampus

Opetuskielet
  • Suomi
Koulutus
  • Konetekniikan tutkinto-ohjelma
Opettaja
  • Ulla Miekkala
Vastuuhenkilö

Ulla Miekkala

Ryhmät
  • 22I112B
    Konetekniikka 2022

Tavoitteet (OJ)

Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa

Sisältö (OJ)

Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.

Esitietovaatimukset (OJ)

Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.

Arviointikriteerit, tyydyttävä (1-2) (OJ)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit, hyvä (3-4) (OJ)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit, kiitettävä (5) (OJ)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Aika ja paikka

ti 11-14 B4-27 (n. puolet mahtuu lähiopetukseen, toinen puoli voi osallistua zoomin välityksellä)
to 8-11 B4-27 (n. puolet mahtuu lähiopetukseen, toinen puoli voi osallistua zoomin välityksellä)

Tenttien ja uusintatenttien ajankohdat

Opintojakson välikokeet pidetään
1. välikoe ti 7.2. klo 11-13 juhlasali (D1-04) (alustava aika, voi tulla muutoksia).
2. välikoe to 23.2. klo 9-11 juhlasali (D1-04) (alustava aika, voi tulla muutoksia).
Uusintaan osallistuminen edellyttää arvosanaa nolla.
1. uusintakoe 29.3.2023 klo 17.00-20.00 (paikka ilmoitetaan ennen tenttiä)
2. uusintakoe/ korotus 12.4.2023 klo 17.00-20.00 (paikka ilmoitetaan ennen tenttiä)
Hyväksyttyä arvosanaa voi korottaa 2. uusintakokeessa.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Uusintakokeeseen ja korotukseen ilmoittaudutaan TAMKin tenttijärjestelmän kautta.

Arviointimenetelmät ja arvioinnin perusteet

Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan välikokeilla (2 kpl), nettitehtävillä ja viikoittain tarkastettavilla harjoitustehtävillä,

Arvostelun vaikuttavat nettitehtävät 15 %, välikokeet yhteensä 75 % ja kotitehtävät 10 %. Kokeiden arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä osallistumista koko opintojakson ajan, nettitehtävien ja kotitehtävien tekoa sekä välikokeisiin osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois. Arvosanan 1 saa pistemäärällä, joka on 30 % kurssin eri arviointimuotojen yhteenlasketusta maksimipistemäärästä.

Uusinta- ja korotus:
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä-, nettitehtävä- eikä välikoepisteet.

Arviointiasteikko

0-5

Opiskelumuodot ja opetusmenetelmät

Lähi- ja etäopetus yhdessä sähkö- ja automaatiotekniikan ryhmän 22I231B kanssa. N. puolet mahtuu lähiopetukseen, toinen puoli voi osallistua opetukseen zoomin välityksellä.
Itsenäinen opiskelu, tuntiharjoitukset ja kotitehtävät, videomateriaalit, nettitehtävät, 2 välikoetta koululla.

Oppimateriaalit

Opettajan Moodlessa jakama materiaali (opetusmonisteet, videot, STACK-tehtävät)
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS/ TI-nspire CX II CAS -laskin.

Opiskelijan ajankäyttö ja kuormitus

Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-opetuksesta, jossa opettaja mukana (lähi- tai Zoom-tunnit)
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, nettitehtävät, opetusvideot)
-kokeista
Opettajan pitämiä lähitunteja on n. 30 h

Sisällön jaksotus

-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät

Lisätietoja opiskelijoille

Opetus alkaa viikolla 2 lukujärjestyksen mukaisesti eli ti 10.1.2023
Opintojaksoon on Moodle-toteutus.

Ilmoittautumisaika

02.12.2022 - 11.01.2023

Ajoitus

09.01.2023 - 05.03.2023

Laajuus

3 op

Toteutustapa

Lähiopetus

Yksikkö

TAMK Matematiikka ja fysiikka

Toimipiste

TAMK Pääkampus

Opetuskielet
  • Suomi
Koulutus
  • Konetekniikan tutkinto-ohjelma
Opettaja
  • Ulla Miekkala
Vastuuhenkilö

Ulla Miekkala

Ryhmät
  • 22I112C
    Konetekniikka 2022

Tavoitteet (OJ)

Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa

Sisältö (OJ)

Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.

Esitietovaatimukset (OJ)

Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.

Arviointikriteerit, tyydyttävä (1-2) (OJ)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit, hyvä (3-4) (OJ)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit, kiitettävä (5) (OJ)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Aika ja paikka

ke 8-11 B4-27 (n. puolet mahtuu lähiopetukseen, toinen puoli voi osallistua zoomin välityksellä)
pe 11-14 B4-18 (n. puolet mahtuu lähiopetukseen, toinen puoli voi osallistua zoomin välityksellä)
(perjantain tunnit kahdella ensimmäisellä opetusviikolla klo 13-16)

Tenttien ja uusintatenttien ajankohdat

Opintojakson välikokeet pidetään
1. välikoe pe 3.2. klo 11-13 juhlasali (D1-04) (alustava aika, voi tulla muutoksia).
2. välikoe pe 24.2. klo 11-13 juhlasali (D1-04) (alustava aika, voi tulla muutoksia).
Uusintaan osallistuminen edellyttää arvosanaa nolla.
1. uusintakoe 29.3.2023 klo 17.00-20.00 (paikka ilmoitetaan ennen tenttiä)
2. uusintakoe/ korotus 12.4.2023 klo 17.00-20.00 (paikka ilmoitetaan ennen tenttiä)
Hyväksyttyä arvosanaa voi korottaa 2. uusintakokeessa.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Uusintakokeeseen ja korotukseen ilmoittaudutaan TAMKin tenttijärjestelmän kautta.

Arviointimenetelmät ja arvioinnin perusteet

Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan välikokeilla (2 kpl), nettitehtävillä ja viikoittain tarkastettavilla harjoitustehtävillä,

Arvostelun vaikuttavat nettitehtävät 15 %, välikokeet yhteensä 75 % ja kotitehtävät 10 %. Kokeiden arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä osallistumista koko opintojakson ajan, nettitehtävien ja kotitehtävien tekoa sekä välikokeisiin osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois. Arvosanan 1 saa pistemäärällä, joka on 30 % kurssin eri arviointimuotojen yhteenlasketusta maksimipistemäärästä.

Uusinta- ja korotus:
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä-, nettitehtävä- eikä välikoepisteet.

Arviointiasteikko

0-5

Opiskelumuodot ja opetusmenetelmät

Lähi- ja etäopetus yhdessä konetekniikan ryhmän 22I112A kanssa. N. puolet mahtuu lähiopetukseen, toinen puoli voi osallistua opetukseen zoomin välityksellä.
Itsenäinen opiskelu, tuntiharjoitukset ja kotitehtävät, videomateriaalit, nettitehtävät, 2 välikoetta koululla.

Oppimateriaalit

Opettajan Moodlessa jakama materiaali (opetusmonisteet, videot, STACK-tehtävät)
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS/ TI-nspire CX II CAS -laskin.

Opiskelijan ajankäyttö ja kuormitus

Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-opetuksesta, jossa opettaja mukana (lähi- tai Zoom-tunnit)
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, nettitehtävät, opetusvideot)
-kokeista
Opettajan pitämiä lähitunteja on n. 30 h

Sisällön jaksotus

-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät

Lisätietoja opiskelijoille

Opetus alkaa viikolla 2 lukujärjestyksen mukaisesti eli ke 11.1.2023
Opintojaksoon on Moodle-toteutus.

Ilmoittautumisaika

02.12.2022 - 15.02.2023

Ajoitus

01.01.2023 - 06.03.2023

Laajuus

3 op

Toteutustapa

Lähiopetus

Yksikkö

TAMK Matematiikka ja fysiikka

Toimipiste

TAMK Pääkampus

Opetuskielet
  • Suomi
Koulutus
  • Rakennustekniikan tutkinto-ohjelma
Opettaja
  • Kirsi-Maria Rinneheimo
Vastuuhenkilö

Kirsi-Maria Rinneheimo

Ryhmät
  • 22RTB
    Rakennustekniikka

Tavoitteet (OJ)

Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa

Sisältö (OJ)

Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.

Esitietovaatimukset (OJ)

Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.

Arviointikriteerit, tyydyttävä (1-2) (OJ)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit, hyvä (3-4) (OJ)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit, kiitettävä (5) (OJ)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Tenttien ja uusintatenttien ajankohdat

Opintojakso suoritetaan kahdella välikokeella, joiden ajat ilmoitetaan kurssin aikana.
Uusintakokeet:
1. uusintakoe xx.3.2023 klo 17-20 ( paikka tarkentuu myöhemmin)
2. uusintakoe/ korotus xx.4.2023 klo 17-20 (paikka tarkentuu myöhemmin)
Uusinnat ja korotukset ovat vain ja ainoastaan tässä ilmoitettuna aikana, ei siis myöhemmin esim. seuraavana vuonna.
Uusintakokeeseen ja korotukseen ilmoittaudutaan opettajan ilmoittamalla tavalla.
Uusintaan osallistuminen edellyttää arvosanaa 0.

Yleiseti kokeesta:
Sairastapauksissa vaaditaan lääkärintodistus.
Poissaolo kokeesta vastaa hylättyä suoritusta.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.

Arviointimenetelmät ja arvioinnin perusteet

Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan kokeella, nettitehtävillä ja harjoitustehtävillä (tunti-, koti- ja ennakkotehtävillä), aktiivisella tuntiosallistumisella ja yhteistoiminnallisella oppimisella, jotka kaikki vaikuttavat arvosanaan. Kokeiden arvioinnissa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan, nettitehtävien ja kotitehtävien tekoa sekä välikokeisiin osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois. Varma läpipääsyraja on 30 % kokeiden yhteenlasketusta maksimipistemäärästä.

Arvosanan määräytyminen:

Välikokeet 75 %
Nettitehtävät 15 % - kts. erillinen ohje osiosta Nettitehtävät
Harjoitustehtävät 10 % - nämä tehtävät merkitään tehdyksi Harjoitustehtävälistaan ja palautetaan Moodleen

Harjoitustehtävillä saa lisäpisteitä oheisen taulukon mukaan:
yli 30% : 1
yli 50% : 2
yli 70% : 3
yli 90% : 4
Kotitehtäväpisteiden saamiseksi on osallistuttava kotitehtävien tarkistukseen (tarkemmat ohjeet Moodlessa).

Huom! Harjoitustehtäväpisteet ovat ehdollisia siihen asti, kun lopullinen opintojaksoarviointi tehdään. Palautuksia tarkistetaan ja verrataan rastilistaan yleensä vasta opintojakson lopulla. Mikäli näyttää siltä, että rastilistaan on merkitty tehtäviä väärin perustein, niin harjoitustehtäväpisteitä vähennetään tai ne mahdollisesti nollataan kokonaan.

Harjoitustehtäväpisteet eivät vaikuta kurssin läpipääsyyn vaan niillä voi korottaa arvosanaa. Lopullinen arvosana määräytyy koepisteiden, nettitehtävien ja harjoitustehtäväpisteiden yhteismäärästä sekä osallistumisaktiivisuudesta.

Uusinta- ja korotus:
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä-, nettitehtävä- eikä välikoepisteet.

Arviointikriteeri - hylätty (0)
Opiskelija osallistuu säännöllisesti opetukseen ja sen työmuotoihin, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Mikäli edellä mainitut kriteerit eivät täyty, niin opiskelija poistetaan toteutukselta. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.

Arviointiasteikko

0-5

Opiskelumuodot ja opetusmenetelmät

Lähiopetus/ etäopetus zoomin kautta, itsenäinen opiskelu, tuntiharjoitukset ja kotitehtävät, videomateriaalit, nettitehtävät (STACK-tehtävät), tentti

Oppimateriaalit

Opettajan Moodlessa jakama materiaali (sähköinen PLUSSA-materiaali, videot, interaktiiviset tehtävät, pdf-materiaalit)
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS/ TI-nspire CX II CAS -laskin.

Opiskelijan ajankäyttö ja kuormitus

Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-opetuksesta, jossa opettajaja mukana
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, nettitehtävät, opetusvideot)
-kokeista
Opettajan pitämiä lähitunteja on n. 30 h

Sisällön jaksotus

-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät

Lisätietoja opiskelijoille

Opetus alkaa viikolla 2 lukujärjestyksen mukaisesti.
Opintojaksoon on Moodle-toteutus. Opettaja lähettää Moodle-avaimen kurssille ilmoittautuneille ennen kurssia alkua sähköpostilla .

Arviointikriteerit - hylätty (0) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.

Arviointikriteerit - tyydyttävä (1-2) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti, numeerisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia.Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä on vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit - hyvä (3-4) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit - kiitettävä (5) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut sekä käyttää oikeita matemaattisia merkintöjä. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Ilmoittautumisaika

02.12.2022 - 15.02.2023

Ajoitus

01.01.2023 - 06.03.2023

Laajuus

3 op

Toteutustapa

Lähiopetus

Yksikkö

TAMK Matematiikka ja fysiikka

Toimipiste

TAMK Pääkampus

Opetuskielet
  • Suomi
Koulutus
  • Rakennustekniikan tutkinto-ohjelma
Opettaja
  • Kirsi-Maria Rinneheimo
Vastuuhenkilö

Kirsi-Maria Rinneheimo

Ryhmät
  • 22RTC
    Rakennustekniikka

Tavoitteet (OJ)

Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa

Sisältö (OJ)

Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.

Esitietovaatimukset (OJ)

Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.

Arviointikriteerit, tyydyttävä (1-2) (OJ)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit, hyvä (3-4) (OJ)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit, kiitettävä (5) (OJ)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Tenttien ja uusintatenttien ajankohdat

Opintojakso suoritetaan kahdella välikokeella, joiden ajat ilmoitetaan kurssin aikana.
Uusintakokeet:
1. uusintakoe xx.3.2023 klo 17-20 ( paikka tarkentuu myöhemmin)
2. uusintakoe/ korotus xx.4.2023 klo 17-20 (paikka tarkentuu myöhemmin)
Uusinnat ja korotukset ovat vain ja ainoastaan tässä ilmoitettuna aikana, ei siis myöhemmin esim. seuraavana vuonna.
Uusintakokeeseen ja korotukseen ilmoittaudutaan opettajan ilmoittamalla tavalla.
Uusintaan osallistuminen edellyttää arvosanaa 0.

Yleiseti kokeesta:
Sairastapauksissa vaaditaan lääkärintodistus.
Poissaolo kokeesta vastaa hylättyä suoritusta.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.

Arviointimenetelmät ja arvioinnin perusteet

Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan kokeella, nettitehtävillä ja harjoitustehtävillä (tunti-, koti- ja ennakkotehtävillä), aktiivisella tuntiosallistumisella ja yhteistoiminnallisella oppimisella, jotka kaikki vaikuttavat arvosanaan. Kokeiden arvioinnissa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan, nettitehtävien ja kotitehtävien tekoa sekä välikokeisiin osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois. Varma läpipääsyraja on 30 % kokeiden yhteenlasketusta maksimipistemäärästä.

Arvosanan määräytyminen:

Välikokeet 75 %
Nettitehtävät 15 % - kts. erillinen ohje osiosta Nettitehtävät
Harjoitustehtävät 10 % - nämä tehtävät merkitään tehdyksi Harjoitustehtävälistaan ja palautetaan Moodleen

Harjoitustehtävillä saa lisäpisteitä oheisen taulukon mukaan:
yli 30% : 1
yli 50% : 2
yli 70% : 3
yli 90% : 4
Kotitehtäväpisteiden saamiseksi on osallistuttava kotitehtävien tarkistukseen (tarkemmat ohjeet Moodlessa).

Huom! Harjoitustehtäväpisteet ovat ehdollisia siihen asti, kun lopullinen opintojaksoarviointi tehdään. Palautuksia tarkistetaan ja verrataan rastilistaan yleensä vasta opintojakson lopulla. Mikäli näyttää siltä, että rastilistaan on merkitty tehtäviä väärin perustein, niin harjoitustehtäväpisteitä vähennetään tai ne mahdollisesti nollataan kokonaan.

Harjoitustehtäväpisteet eivät vaikuta kurssin läpipääsyyn vaan niillä voi korottaa arvosanaa. Lopullinen arvosana määräytyy koepisteiden, nettitehtävien ja harjoitustehtäväpisteiden yhteismäärästä sekä osallistumisaktiivisuudesta.

Uusinta- ja korotus:
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä-, nettitehtävä- eikä välikoepisteet.

Arviointikriteeri - hylätty (0)
Opiskelija osallistuu säännöllisesti opetukseen ja sen työmuotoihin, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Mikäli edellä mainitut kriteerit eivät täyty, niin opiskelija poistetaan toteutukselta. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.

Arviointiasteikko

0-5

Opiskelumuodot ja opetusmenetelmät

Lähiopetus/ etäopetus zoomin kautta, itsenäinen opiskelu, tuntiharjoitukset ja kotitehtävät, videomateriaalit, nettitehtävät (STACK-tehtävät), tentti

Oppimateriaalit

Opettajan Moodlessa jakama materiaali (sähköinen PLUSSA-materiaali, videot, interaktiiviset tehtävät, pdf-materiaalit)
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS/ TI-nspire CX II CAS -laskin.

Opiskelijan ajankäyttö ja kuormitus

Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-opetuksesta, jossa opettajaja mukana
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, nettitehtävät, opetusvideot)
-kokeista
Opettajan pitämiä lähitunteja on n. 30 h

Sisällön jaksotus

-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät

Lisätietoja opiskelijoille

Opetus alkaa viikolla 2 lukujärjestyksen mukaisesti.
Opintojaksoon on Moodle-toteutus. Opettaja lähettää Moodle-avaimen kurssille ilmoittautuneille ennen kurssia alkua sähköpostilla .

Arviointikriteerit - hylätty (0) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.

Arviointikriteerit - tyydyttävä (1-2) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti, numeerisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia.Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä on vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit - hyvä (3-4) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit - kiitettävä (5) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut sekä käyttää oikeita matemaattisia merkintöjä. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Ilmoittautumisaika

23.11.2022 - 12.01.2023

Ajoitus

01.01.2023 - 05.03.2023

Laajuus

3 op

Toteutustapa

Lähiopetus

Yksikkö

Matematiikka

Toimipiste

TAMK Pääkampus

Opetuskielet
  • Suomi
Koulutus
  • Laboratoriotekniikan tutkinto-ohjelma
Opettaja
  • Sara Nortunen
Vastuuhenkilö

Sara Nortunen

Ryhmät
  • 22LATE
    Laboratoriotekniikka 2022
  • 22BIOTB
    Biotuotetekniikan tutkinto-ohjelma, syksy 2022

Tavoitteet (OJ)

Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa

Sisältö (OJ)

Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.

Esitietovaatimukset (OJ)

Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.

Arviointikriteerit, tyydyttävä (1-2) (OJ)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit, hyvä (3-4) (OJ)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit, kiitettävä (5) (OJ)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Tenttien ja uusintatenttien ajankohdat

Opintojakson koe pidetään 22.2.2023 tuntiaikaan (alustava aika, voi tulla muutoksia).
Uusintaan osallistuminen edellyttää arvosanaa nolla.
1. uusinta 29.3.2023 klo 17.00-20.00 luokassa x.
2. uusinta/korotus 12.4.2023 klo 17.00-20.00 luokassa x.
Hyväksyttyä arvosanaa voi korottaa 2. uusintakokeessa.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Uusintakokeeseen ja korotukseen ilmoittaudutaan TAMKin tenttijärjestelmän kautta.

Arviointimenetelmät ja arvioinnin perusteet

Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan kokeella ja viikoittain tarkastettavilla harjoitustehtävillä, joiden tekeminen vaikuttaa arvosanaan. Kotitehtäväpisteiden saamiseksi tehtävät on palautettava kirjallisesti (tarkemmat ohjeet Moodlessa). Opintojaksoon saattaa sisältyä myös ryhmässä tehtäviä osioita. Kokeen arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan, kotitehtävien aktiivista tekemistä (vähintään 30%) sekä kurssikokeeseen osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois.
Harjoitustehtävillä saa lisäpisteitä oheisen taulukon mukaan:
yli 30% : 1
yli 50%: 2
yli 70% : 3
yli 90% : 4
Harjoitustehtäväpisteet eivät vaikuta kurssin läpipääsyyn vaan niillä voi korottaa arvosanaa. Lopullinen arvosana määräytyy koepisteiden ja harjoitustehtäväpisteiden yhteismäärästä sekä osallistumisaktiivisuudesta. Harjoitustehtäväpisteitä ei huomioida enää uusinta- ja korotustenttien yhteydessä.
Arviointikriteeri -hylätty(0):
Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.

Arviointiasteikko

0-5

Opiskelumuodot ja opetusmenetelmät

lähiopetus
etäopetus
ryhmätyö
harjoitukset
kurssikoe
uusintatentti

Oppimateriaalit

Opettajan jakama materiaali
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS-laskin.

Opiskelijan ajankäyttö ja kuormitus

Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-lähi/etäopetuksesta, jossa opettajaja mukana
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, STACK-tehtävät, opetusvideot)
-kokeesta
Opettajan pitämiä oppitunteja on n. 27-30 h.

Sisällön jaksotus

-regressio
-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät

Lisätietoja opiskelijoille

Opetus alkaa 11.1. lukujärjestyksen mukaisesti.
Opintojaksoon on Moodle-toteutus. Oppitunnit pyritään pitämään lähiopetuksena etämahdollisuuden kanssa. Tarvittaessa oppitunnit pidetään kokonaan etänä.

Arviointikriteerit - hylätty (0) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.

Arviointikriteerit - tyydyttävä (1-2) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti, numeerisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä on vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit - hyvä (3-4) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit - kiitettävä (5) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut sekä käyttää oikeita matemaattisia merkintöjä. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Ilmoittautumisaika

01.12.2022 - 03.01.2023

Ajoitus

01.01.2023 - 05.03.2023

Laajuus

3 op

Toteutustapa

Lähiopetus

Yksikkö

TAMK Matematiikka ja fysiikka

Toimipiste

TAMK Pääkampus

Opetuskielet
  • Suomi
Koulutus
  • Talotekniikan tutkinto-ohjelma, Sähköinen talotekniikka
Opettaja
  • Pia Ruokonen-Kaukolinna
Vastuuhenkilö

Pia Ruokonen-Kaukolinna

Ryhmät
  • 22I254
    Sähköinen talotekniikka

Tavoitteet (OJ)

Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa

Sisältö (OJ)

Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.

Esitietovaatimukset (OJ)

Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.

Arviointikriteerit, tyydyttävä (1-2) (OJ)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit, hyvä (3-4) (OJ)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit, kiitettävä (5) (OJ)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Tenttien ja uusintatenttien ajankohdat

Opintojakso suoritetaan viikottaisilla harjoitustehtävillä, nettitehtävillä ja kokeella.
Koe 21.2.2023 (Alustava aika, johon voi tulla muutoksia, joista tiedotetaan tunneilla ja sähköpostilla)

Koko kurssin uusintakoe järjestetään seuraavasti:

1. uusintakoe 29.3.2023 klo 17-20
2. uusintakoe/ korotus 12.4.2023 klo 17-20

Uusinnat ja korotukset ovat vain ja ainoastaan tässä ilmoitettuna aikana, ei siis myöhemmin esim. seuraavana vuonna.
Uusintakokeeseen ja korotukseen ilmoittaudutaan Pakin kautta..
Uusintaan osallistuminen edellyttää arvosanaa 0.

Yleiseti kokeesta:
Sairastapauksissa vaaditaan lääkärintodistus.
Poissaolo kokeesta vastaa hylättyä suoritusta.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.

Arviointimenetelmät ja arvioinnin perusteet

Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan kokeella/kokeilla, nettitehtävillä ja viikoittain tarkastettavilla harjoitustehtävillä,

Arvosteluun vaikuttavat nettitehtävät 15 %, kotitehtävät 10 % ja koe 75 %. Kokeen arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä osallistumista kurssin eri työmuotoihin koko opintojakson ajan (opetus, kotitehtävät, nettitehtävät ja koe) . Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois. Arvosanan 1 saa pistemäärällä, joka on 30 % kurssin eri arviointimuotojen yhteenlasketusta maksimipistemäärästä.


Uusinta- ja korotus:
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä-, nettitehtävä- eikä aiemmat koepisteet.


Arviointikriteeri - hylätty (0)
Opiskelija osallistuu säännöllisesti opetukseen ja sen työmuotoihin, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Mikäli edellä mainitut kriteerit eivät täyty, niin opiskelija poistetaan toteutukselta. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.

Arviointiasteikko

0-5

Opiskelumuodot ja opetusmenetelmät

Etäopetus zoomin kautta, itsenäinen opiskelu, videomateriaalit, tuntiharjoitukset ja kotitehtävät, nettitehtävät (STACK-tehtävät), tentti
Zoom-linkki löytyy kurssin Moodlesta.

Oppimateriaalit

Opettajan Moodlessa jakama materiaali (pdf-materiaalit, videot, interaktiiviset tehtävät)
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS/ TI-nspire CX II CAS -laskin.

Opiskelijan ajankäyttö ja kuormitus

Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
- etäopetuksesta, jossa opettajaja mukana
- mahdollisista ryhmätöistä (opettaja ei ole mukana)
- itsenäisestä työskentelystä (mm. kotitehtävät, nettitehtävät, opetusvideot)
- kokeista
Opettajan pitämiä lähitunteja on n. 30 h

Sisällön jaksotus

Sisällön jaksotus on suuntaa antava. Osa opsissa mainituista kokonaisuuksista on tarkoitus suorittaa itsenäisenä opiskeluna ja/tai ryhmätöinä.

-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät

Lisätietoja opiskelijoille

Opetus alkaa lukujärjestyksen mukaisesti viikolla 2.
Opintojaksoon tulee Moodle-toteutus. Toteutus ei näy automaattisesti, vaan se täytyy hakea kurssitunnuksella. Opettaja lähettää ilmoittautuneille ennen kurssin alkua Moodle-avaimen sähköpostilla. Etäopetuksen Zoom-linkki löytyy Moodlesta.

Toteutukset 5N00EG74-3081 (22I254) ja 5N00EG74-3083 (22I253) opetetaan yhdessä ja näillä on yhteinen Moodle, joka on nimetty toteutuksen 5N00EG74-3081 mukaan.

Arviointikriteerit - hylätty (0) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.

Arviointikriteerit - tyydyttävä (1-2) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti, numeerisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia.Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä on vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit - hyvä (3-4) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit - kiitettävä (5) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut sekä käyttää oikeita matemaattisia merkintöjä. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Ilmoittautumisaika

23.11.2022 - 12.01.2023

Ajoitus

01.01.2023 - 05.03.2023

Laajuus

3 op

Toteutustapa

Lähiopetus

Yksikkö

TAMK Matematiikka ja fysiikka

Toimipiste

TAMK Pääkampus

Opetuskielet
  • Suomi
Koulutus
  • Biotuotetekniikan tutkinto-ohjelma
Opettaja
  • Sara Nortunen
Vastuuhenkilö

Sara Nortunen

Ryhmät
  • 22BIOTB
    Biotuotetekniikan tutkinto-ohjelma, syksy 2022

Tavoitteet (OJ)

Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa

Sisältö (OJ)

Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.

Esitietovaatimukset (OJ)

Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.

Arviointikriteerit, tyydyttävä (1-2) (OJ)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit, hyvä (3-4) (OJ)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit, kiitettävä (5) (OJ)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Tenttien ja uusintatenttien ajankohdat

Opintojakson koe pidetään 22.2.2023 tuntiaikaan (alustava aika, voi tulla muutoksia).
Uusintaan osallistuminen edellyttää arvosanaa nolla.
1. uusinta 29.3.2023 klo 17.00-20.00 luokassa x.
2. uusinta/korotus 12.4.2023 klo 17.00-20.00 luokassa x.
Hyväksyttyä arvosanaa voi korottaa 2. uusintakokeessa.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Uusintakokeeseen ja korotukseen ilmoittaudutaan TAMKin tenttijärjestelmän kautta.

Arviointimenetelmät ja arvioinnin perusteet

Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan kokeella ja viikoittain tarkastettavilla harjoitustehtävillä, joiden tekeminen vaikuttaa arvosanaan. Kotitehtäväpisteiden saamiseksi tehtävät on palautettava kirjallisesti (tarkemmat ohjeet Moodlessa). Opintojaksoon saattaa sisältyä myös ryhmässä tehtäviä osioita. Kokeen arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan, kotitehtävien aktiivista tekemistä (vähintään 30%) sekä kurssikokeeseen osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois.
Harjoitustehtävillä saa lisäpisteitä oheisen taulukon mukaan:
yli 30% : 1
yli 50%: 2
yli 70% : 3
yli 90% : 4
Harjoitustehtäväpisteet eivät vaikuta kurssin läpipääsyyn vaan niillä voi korottaa arvosanaa. Lopullinen arvosana määräytyy koepisteiden ja harjoitustehtäväpisteiden yhteismäärästä sekä osallistumisaktiivisuudesta. Harjoitustehtäväpisteitä ei huomioida enää uusinta- ja korotustenttien yhteydessä.
Arviointikriteeri -hylätty(0):
Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.

Arviointiasteikko

0-5

Opiskelumuodot ja opetusmenetelmät

lähiopetus
etäopetus
ryhmätyö
harjoitukset
kurssikoe
uusintatentti

Oppimateriaalit

Opettajan jakama materiaali
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS-laskin.

Opiskelijan ajankäyttö ja kuormitus

Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-lähi/etäopetuksesta, jossa opettajaja mukana
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, STACK-tehtävät, opetusvideot)
-kokeesta
Opettajan pitämiä oppitunteja on n. 27-30 h.

Sisällön jaksotus

-regressio
-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät

Lisätietoja opiskelijoille

Opetus alkaa 11.1. lukujärjestyksen mukaisesti.
Opintojaksoon on Moodle-toteutus. Oppitunnit pyritään pitämään lähiopetuksena etämahdollisuuden kanssa. Tarvittaessa oppitunnit pidetään kokonaan etänä.

Arviointikriteerit - hylätty (0) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.

Arviointikriteerit - tyydyttävä (1-2) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti, numeerisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä on vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit - hyvä (3-4) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit - kiitettävä (5) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut sekä käyttää oikeita matemaattisia merkintöjä. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Ilmoittautumisaika

01.12.2022 - 03.01.2023

Ajoitus

01.01.2023 - 07.03.2023

Laajuus

3 op

Toteutustapa

Lähiopetus

Yksikkö

TAMK Matematiikka ja fysiikka

Toimipiste

TAMK Pääkampus

Opetuskielet
  • Suomi
Koulutus
  • Talotekniikan tutkinto-ohjelma, LVI-talotekniikka
Opettaja
  • Pia Ruokonen-Kaukolinna
Vastuuhenkilö

Pia Ruokonen-Kaukolinna

Ryhmät
  • 22I253
    LVI-talotekniikka

Tavoitteet (OJ)

Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa

Sisältö (OJ)

Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.

Esitietovaatimukset (OJ)

Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.

Arviointikriteerit, tyydyttävä (1-2) (OJ)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit, hyvä (3-4) (OJ)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit, kiitettävä (5) (OJ)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Tenttien ja uusintatenttien ajankohdat

Opintojakso suoritetaan viikottaisilla harjoitustehtävillä, nettitehtävillä ja kokeella.
Koe 21.2.2023 (Alustava aika, johon voi tulla muutoksia, joista tiedotetaan tunneilla ja sähköpostilla)

Koko kurssin uusintakoe järjestetään seuraavasti:

1. uusintakoe 29.3.2023 klo 17-20
2. uusintakoe/ korotus 12.4.2023 klo 17-20

Uusinnat ja korotukset ovat vain ja ainoastaan tässä ilmoitettuna aikana, ei siis myöhemmin esim. seuraavana vuonna.
Uusintakokeeseen ja korotukseen ilmoittaudutaan Pakin kautta..
Uusintaan osallistuminen edellyttää arvosanaa 0.

Yleiseti kokeesta:
Sairastapauksissa vaaditaan lääkärintodistus.
Poissaolo kokeesta vastaa hylättyä suoritusta.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.

Arviointimenetelmät ja arvioinnin perusteet

Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan kokeella/kokeilla, nettitehtävillä ja viikoittain tarkastettavilla harjoitustehtävillä,

Arvosteluun vaikuttavat nettitehtävät 15 %, kotitehtävät 10 % ja koe 75 %. Kokeen arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä osallistumista kurssin eri työmuotoihin koko opintojakson ajan (opetus, kotitehtävät, nettitehtävät ja koe) . Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois. Arvosanan 1 saa pistemäärällä, joka on 30 % kurssin eri arviointimuotojen yhteenlasketusta maksimipistemäärästä.


Uusinta- ja korotus:
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä-, nettitehtävä- eikä aiemmat koepisteet.


Arviointikriteeri - hylätty (0)
Opiskelija osallistuu säännöllisesti opetukseen ja sen työmuotoihin, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Mikäli edellä mainitut kriteerit eivät täyty, niin opiskelija poistetaan toteutukselta. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.

Arviointiasteikko

0-5

Opiskelumuodot ja opetusmenetelmät

Etäopetus zoomin kautta, itsenäinen opiskelu, videomateriaalit, tuntiharjoitukset ja kotitehtävät, nettitehtävät (STACK-tehtävät), tentti
Zoom-linkki löytyy kurssin Moodlesta.

Oppimateriaalit

Opettajan Moodlessa jakama materiaali (pdf-materiaalit, videot, interaktiiviset tehtävät)
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS/ TI-nspire CX II CAS -laskin.

Opiskelijan ajankäyttö ja kuormitus

Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
- etäopetuksesta, jossa opettajaja mukana
- mahdollisista ryhmätöistä (opettaja ei ole mukana)
- itsenäisestä työskentelystä (mm. kotitehtävät, nettitehtävät, opetusvideot)
- kokeista
Opettajan pitämiä lähitunteja on n. 30 h

Sisällön jaksotus

Sisällön jaksotus on suuntaa antava. Osa opsissa mainituista kokonaisuuksista on tarkoitus suorittaa itsenäisenä opiskeluna ja/tai ryhmätöinä.

-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät

Lisätietoja opiskelijoille

Opetus alkaa lukujärjestyksen mukaisesti viikolla 2.
Opintojaksoon tulee Moodle-toteutus. Toteutus ei näy automaattisesti, vaan se täytyy hakea kurssitunnuksella. Opettaja lähettää ilmoittautuneille ennen kurssin alkua Moodle-avaimen sähköpostilla. Etäopetuksen Zoom-linkki löytyy Moodlesta.

Toteutukset 5N00EG74-3081 (22I254) ja 5N00EG74-3083 (22I253) opetetaan yhdessä ja näillä on yhteinen Moodle, joka on nimetty toteutuksen 5N00EG74-3081 mukaan.

Arviointikriteerit - hylätty (0) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.

Arviointikriteerit - tyydyttävä (1-2) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti, numeerisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia.Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä on vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit - hyvä (3-4) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit - kiitettävä (5) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut sekä käyttää oikeita matemaattisia merkintöjä. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Ilmoittautumisaika

01.12.2022 - 03.01.2023

Ajoitus

01.01.2023 - 05.03.2023

Laajuus

3 op

Toteutustapa

Lähiopetus

Yksikkö

TAMK Matematiikka ja fysiikka

Toimipiste

TAMK Pääkampus

Opetuskielet
  • Suomi
Koulutus
  • Rakennustekniikan tutkinto-ohjelma
Opettaja
  • Pia Ruokonen-Kaukolinna
Vastuuhenkilö

Pia Ruokonen-Kaukolinna

Ryhmät
  • 22RTD
    Rakennustekniikka

Tavoitteet (OJ)

Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa

Sisältö (OJ)

Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.

Esitietovaatimukset (OJ)

Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.

Arviointikriteerit, tyydyttävä (1-2) (OJ)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit, hyvä (3-4) (OJ)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit, kiitettävä (5) (OJ)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Tenttien ja uusintatenttien ajankohdat

Opintojakso suoritetaan viikottaisilla harjoitustehtävillä, nettitehtävillä ja kokeella.
Koe 24.2.2023 (Alustava aika, johon voi tulla muutoksia, joista tiedotetaan tunneilla ja sähköpostilla)

Koko kurssin uusintakoe järjestetään seuraavasti:

1. uusintakoe 29.3.2023 klo 17-20
2. uusintakoe/ korotus 12.4.2023 klo 17-20

Uusinnat ja korotukset ovat vain ja ainoastaan tässä ilmoitettuna aikana, ei siis myöhemmin esim. seuraavana vuonna.
Uusintakokeeseen ja korotukseen ilmoittaudutaan Pakin kautta..
Uusintaan osallistuminen edellyttää arvosanaa 0.

Yleiseti kokeesta:
Sairastapauksissa vaaditaan lääkärintodistus.
Poissaolo kokeesta vastaa hylättyä suoritusta.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.

Arviointimenetelmät ja arvioinnin perusteet

Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan kokeella/kokeilla, nettitehtävillä ja viikoittain tarkastettavilla harjoitustehtävillä,

Arvosteluun vaikuttavat nettitehtävät 15 %, kotitehtävät 10 % ja koe 75 %. Kokeen arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä osallistumista kurssin eri työmuotoihin koko opintojakson ajan (opetus, kotitehtävät, nettitehtävät ja koe) . Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois. Arvosanan 1 saa pistemäärällä, joka on 30 % kurssin eri arviointimuotojen yhteenlasketusta maksimipistemäärästä.


Uusinta- ja korotus:
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä-, nettitehtävä- eikä aiemmat koepisteet.


Arviointikriteeri - hylätty (0)
Opiskelija osallistuu säännöllisesti opetukseen ja sen työmuotoihin, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Mikäli edellä mainitut kriteerit eivät täyty, niin opiskelija poistetaan toteutukselta. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.

Arviointiasteikko

0-5

Opiskelumuodot ja opetusmenetelmät

Etäopetus zoomin kautta, itsenäinen opiskelu, videomateriaalit, tuntiharjoitukset ja kotitehtävät, nettitehtävät (STACK-tehtävät), tentti
Zoom-linkki löytyy kurssin Moodlesta.

Oppimateriaalit

Opettajan Moodlessa jakama materiaali (pdf-materiaalit, videot, interaktiiviset tehtävät)
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS/ TI-nspire CX II CAS -laskin.

Opiskelijan ajankäyttö ja kuormitus

Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
- etäopetuksesta, jossa opettajaja mukana
- mahdollisista ryhmätöistä (opettaja ei ole mukana)
- itsenäisestä työskentelystä (mm. kotitehtävät, nettitehtävät, opetusvideot)
- kokeista
Opettajan pitämiä lähitunteja on n. 30 h

Sisällön jaksotus

Sisällön jaksotus on suuntaa antava. Osa opsissa mainituista kokonaisuuksista on tarkoitus suorittaa itsenäisenä opiskeluna ja/tai ryhmätöinä.

-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät

Lisätietoja opiskelijoille

Opetus alkaa lukujärjestyksen mukaisesti viikolla 2.
Opintojaksoon tulee Moodle-toteutus. Toteutus ei näy automaattisesti, vaan se täytyy hakea kurssitunnuksella. Opettaja lähettää ilmoittautuneille ennen kurssin alkua Moodle-avaimen sähköpostilla. Etäopetuksen Zoom-linkki löytyy Moodlesta.

Toteutukset 5N00EG74-3054 (22RTA) ja 5N00EG74-3085 (22RTD) opetetaan yhdessä ja näillä on yhteinen Moodle, joka on nimetty toteutuksen 5N00EG74-3054 mukaan.

Arviointikriteerit - hylätty (0) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.

Arviointikriteerit - tyydyttävä (1-2) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti, numeerisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia.Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä on vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit - hyvä (3-4) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit - kiitettävä (5) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut sekä käyttää oikeita matemaattisia merkintöjä. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Ilmoittautumisaika

02.12.2022 - 31.12.2022

Ajoitus

01.01.2023 - 05.03.2023

Laajuus

3 op

Toteutustapa

Lähiopetus

Yksikkö

TAMK Matematiikka ja fysiikka

Toimipiste

TAMK Pääkampus

Opetuskielet
  • Suomi
Koulutus
  • Autotekniikan tutkinto-ohjelma
Opettaja
  • Pia Ruokonen-Kaukolinna
Vastuuhenkilö

Pia Ruokonen-Kaukolinna

Ryhmät
  • 22AUTOA
    Autotekniikka 2022

Tavoitteet (OJ)

Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa

Sisältö (OJ)

Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.

Esitietovaatimukset (OJ)

Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.

Arviointikriteerit, tyydyttävä (1-2) (OJ)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit, hyvä (3-4) (OJ)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit, kiitettävä (5) (OJ)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Tenttien ja uusintatenttien ajankohdat

Opintojakso suoritetaan viikottaisilla harjoitustehtävillä, nettitehtävillä ja kokeella.
Koe 24.2.2023 (Alustava aika, johon voi tulla muutoksia, joista tiedotetaan tunneilla ja sähköpostilla)

Koko kurssin uusintakoe järjestetään seuraavasti:

1. uusintakoe 29.3.2023 klo 17-20
2. uusintakoe/ korotus 12.4.2023 klo 17-20

Uusinnat ja korotukset ovat vain ja ainoastaan tässä ilmoitettuna aikana, ei siis myöhemmin esim. seuraavana vuonna.
Uusintakokeeseen ja korotukseen ilmoittaudutaan Pakin kautta..
Uusintaan osallistuminen edellyttää arvosanaa 0.

Yleiseti kokeesta:
Sairastapauksissa vaaditaan lääkärintodistus.
Poissaolo kokeesta vastaa hylättyä suoritusta.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.

Arviointimenetelmät ja arvioinnin perusteet

Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan kokeella/kokeilla, nettitehtävillä ja viikoittain tarkastettavilla harjoitustehtävillä,

Arvosteluun vaikuttavat nettitehtävät 15 %, kotitehtävät 10 % ja koe 75 %. Kokeen arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä osallistumista kurssin eri työmuotoihin koko opintojakson ajan (opetus, kotitehtävät, nettitehtävät ja koe) . Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois. Arvosanan 1 saa pistemäärällä, joka on 30 % kurssin eri arviointimuotojen yhteenlasketusta maksimipistemäärästä.


Uusinta- ja korotus:
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä-, nettitehtävä- eikä aiemmat koepisteet.


Arviointikriteeri - hylätty (0)
Opiskelija osallistuu säännöllisesti opetukseen ja sen työmuotoihin, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Mikäli edellä mainitut kriteerit eivät täyty, niin opiskelija poistetaan toteutukselta. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.

Arviointiasteikko

0-5

Opiskelumuodot ja opetusmenetelmät

Etäopetus zoomin kautta, itsenäinen opiskelu, videomateriaalit, tuntiharjoitukset ja kotitehtävät, nettitehtävät (STACK-tehtävät), tentti
Zoom-linkki löytyy kurssin Moodlesta.

Oppimateriaalit

Opettajan Moodlessa jakama materiaali (pdf-materiaalit, videot, interaktiiviset tehtävät)
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS/ TI-nspire CX II CAS -laskin.

Opiskelijan ajankäyttö ja kuormitus

Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
- etäopetuksesta, jossa opettajaja mukana
- mahdollisista ryhmätöistä (opettaja ei ole mukana)
- itsenäisestä työskentelystä (mm. kotitehtävät, nettitehtävät, opetusvideot)
- kokeista
Opettajan pitämiä lähitunteja on n. 30 h

Sisällön jaksotus

Sisällön jaksotus on suuntaa antava. Osa opsissa mainituista kokonaisuuksista on tarkoitus suorittaa itsenäisenä opiskeluna ja/tai ryhmätöinä.

-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät

Lisätietoja opiskelijoille

Opetus alkaa lukujärjestyksen mukaisesti viikolla 2.
Opintojaksoon tulee Moodle-toteutus. Toteutus ei näy automaattisesti, vaan se täytyy hakea kurssitunnuksella. Opettaja lähettää ilmoittautuneille ennen kurssin alkua Moodle-avaimen sähköpostilla. Etäopetuksen Zoom-linkki löytyy Moodlesta.

Toteutukset 5N00EG74-3090 (22AUTOA) ja 5N00EG74-3091 (22AUTOB) opetetaan yhdessä ja näillä on yhteinen Moodle, joka on nimetty toteutuksen 5N00EG74-3090 mukaan.

Arviointikriteerit - hylätty (0) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.

Arviointikriteerit - tyydyttävä (1-2) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti, numeerisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia.Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä on vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit - hyvä (3-4) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit - kiitettävä (5) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut sekä käyttää oikeita matemaattisia merkintöjä. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Ilmoittautumisaika

02.12.2022 - 31.12.2022

Ajoitus

01.01.2023 - 05.03.2023

Laajuus

3 op

Toteutustapa

Lähiopetus

Yksikkö

TAMK Matematiikka ja fysiikka

Toimipiste

TAMK Pääkampus

Opetuskielet
  • Suomi
Koulutus
  • Autotekniikan tutkinto-ohjelma
Opettaja
  • Pia Ruokonen-Kaukolinna
Vastuuhenkilö

Pia Ruokonen-Kaukolinna

Ryhmät
  • 22AUTOB
    Autotekniikka 2022

Tavoitteet (OJ)

Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa

Sisältö (OJ)

Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.

Esitietovaatimukset (OJ)

Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.

Arviointikriteerit, tyydyttävä (1-2) (OJ)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit, hyvä (3-4) (OJ)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit, kiitettävä (5) (OJ)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Arviointiasteikko

0-5

Ilmoittautumisaika

02.07.2022 - 26.08.2022

Ajoitus

29.08.2022 - 23.10.2022

Laajuus

3 op

Toteutustapa

Lähiopetus

Toimipiste

TAMK Pääkampus

Opetuskielet
  • Suomi
Paikat

0 - 40

Koulutus
  • Sähkö- ja automaatiotekniikan tutkinto-ohjelma
Opettaja
  • Lasse Enäsuo
Vastuuhenkilö

Lasse Enäsuo

Ryhmät
  • 22I231A
    Sähkö- ja automaatiotekniikka

Tavoitteet (OJ)

Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa

Sisältö (OJ)

Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.

Esitietovaatimukset (OJ)

Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.

Arviointikriteerit, tyydyttävä (1-2) (OJ)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit, hyvä (3-4) (OJ)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit, kiitettävä (5) (OJ)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Tenttien ja uusintatenttien ajankohdat

Opintojakson koe pidetään viikolla 41 tuntiaikaan (tarkempi aika ilmoitetaan myöhemmin Moodlessa).
Uusintaan osallistuminen edellyttää arvosanaa nolla.
1. uusinta alustavasti 9.11.2022 klo 17.00-20.00 luokassa x.
2. uusinta/korotus alustavasti 7.12.2022 klo 17.00-20.00 luokassa x.
Hyväksyttyä arvosanaa voi korottaa 2. uusintakokeessa.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Uusintakokeeseen ja korotukseen ilmoittaudutaan TAMKin tenttijärjestelmän kautta.

Arviointimenetelmät ja arvioinnin perusteet

Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan kokeilla ja viikoittain tarkastettavilla harjoitustehtävillä, joiden tekeminen vaikuttaa arvosanaan. Kotitehtäväpisteiden saamiseksi on palautettava kotitehtävät ohjeiden mukaisesti Moodleen (tarkemmat ohjeet Moodlessa). Opintojaksoon saattaa sisältyä myös ryhmässä tehtäviä osioita. Kokeen arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys.

Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan, kotitehtävien aktiivista tekemistä sekä kurssikokeeseen osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois.

Lopullinen arvosana määräytyy koepisteiden (pikkukokeet ja loppukoe) ja harjoitustehtäväpisteiden yhteismäärästä sekä osallistumisaktiivisuudesta. Viikkokokeita ei huomioida enää uusinta- ja korotustenttien yhteydessä, vaan uusintakoe on erillinen arvioitava kokonaisuus.

Arviointikriteeri -hylätty(0):
Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.

Arviointiasteikko

0-5

Opiskelumuodot ja opetusmenetelmät

lähiopetus
ryhmätyö
harjoitukset
viikkokokeet
loppukoe
uusintatentti

Oppimateriaalit

Opettajan jakama materiaali
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS-laskin.

Opiskelijan ajankäyttö ja kuormitus

Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-lähi/etäopetuksesta, jossa opettajaja mukana
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, STACK-tehtävät, opetusvideot)
-kokeesta
Opettajan pitämiä oppitunteja on n. 30 h

Sisällön jaksotus

-regressio
-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät

Lisätietoja opiskelijoille

Opetus alkaa lukujärjestyksen mukaisesti.
Opintojaksoon on Moodle-toteutus. Oppitunnit pidetään kurssilla lähiopetuksena.

Arviointikriteerit - hylätty (0) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.

Arviointikriteerit - tyydyttävä (1-2) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti, numeerisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä on vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit - hyvä (3-4) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit - kiitettävä (5) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut sekä käyttää oikeita matemaattisia merkintöjä. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Ilmoittautumisaika

18.07.2022 - 26.08.2022

Ajoitus

29.08.2022 - 23.10.2022

Laajuus

3 op

Toteutustapa

Lähiopetus

Yksikkö

TAMK Matematiikka ja fysiikka

Toimipiste

TAMK Pääkampus

Opetuskielet
  • Suomi
Koulutus
  • Konetekniikan tutkinto-ohjelma
Opettaja
  • Lasse Enäsuo
Vastuuhenkilö

Lasse Enäsuo

Ryhmät
  • 22AI112P
    Konetekniikka 2022, monimuoto

Tavoitteet (OJ)

Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa

Sisältö (OJ)

Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.

Esitietovaatimukset (OJ)

Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.

Arviointikriteerit, tyydyttävä (1-2) (OJ)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit, hyvä (3-4) (OJ)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit, kiitettävä (5) (OJ)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Tenttien ja uusintatenttien ajankohdat

Opintojakson koe pidetään viikolla 41 (tarkempi aika ilmoitetaan myöhemmin Moodlessa).
Uusintaan osallistuminen edellyttää arvosanaa nolla.
1. uusinta alustavasti 9.11.2022 klo 17.00-20.00 luokassa x.
2. uusinta/korotus alustavasti 7.12.2022 klo 17.00-20.00 luokassa x.
Hyväksyttyä arvosanaa voi korottaa 2. uusintakokeessa.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Uusintakokeeseen ja korotukseen ilmoittaudutaan TAMKin tenttijärjestelmän kautta.

Arviointimenetelmät ja arvioinnin perusteet

Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan kokeella ja viikoittain tarkastettavilla harjoitustehtävillä, joiden tekeminen vaikuttaa arvosanaan. Kotitehtäväpisteiden saamiseksi on palautettava kotitehtävät ohjeiden mukaisesti Moodleen (tarkemmat ohjeet Moodlessa). Opintojaksoon saattaa sisältyä myös ryhmässä tehtäviä osioita. Kokeen arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys.

Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan, kotitehtävien aktiivista tekemistä sekä kurssikokeeseen osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois.

Lopullinen arvosana määräytyy koepisteiden ja harjoitustehtäväpisteiden yhteismäärästä sekä osallistumisaktiivisuudesta.

Arviointikriteeri -hylätty(0):
Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.

Arviointiasteikko

0-5

Opiskelumuodot ja opetusmenetelmät

lähiopetus
etäopetus
ryhmätyö
harjoitukset
loppukoe
uusintatentti

Oppimateriaalit

Opettajan jakama materiaali
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS-laskin.

Opiskelijan ajankäyttö ja kuormitus

Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-lähi/etäopetuksesta, jossa opettajaja mukana
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, STACK-tehtävät, opetusvideot)
-kokeesta
Opettajan pitämiä oppitunteja on n. 28 h (7 kertaa 4 oppituntia)

Sisällön jaksotus

-regressio
-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät

Lisätietoja opiskelijoille

Opetus alkaa lukujärjestyksen mukaisesti.
Opintojaksoon on Moodle-toteutus. Oppitunnit pidetään kurssilla lähiopetuksena tai etäopetuksena lukujärjestyksen mukaisesti. Hybridiopetusta ei järjestetä.

Arviointikriteerit - hylätty (0) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.

Arviointikriteerit - tyydyttävä (1-2) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti, numeerisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä on vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit - hyvä (3-4) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit - kiitettävä (5) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut sekä käyttää oikeita matemaattisia merkintöjä. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Ilmoittautumisaika

30.07.2022 - 05.09.2022

Ajoitus

22.08.2022 - 23.10.2022

Laajuus

3 op

Toteutustapa

Lähiopetus

Yksikkö

TAMK Matematiikka ja fysiikka

Opetuskielet
  • Suomi
Koulutus
  • Biotuotetekniikan tutkinto-ohjelma
Opettaja
  • Sara Nortunen
Vastuuhenkilö

Sara Nortunen

Ryhmät
  • 22BIOTA
    Biotuotetekniikan tutkinto-ohjelma, kevät 2022
  • 21KONEvayla
    LAM väyläopiskelija Konetekniikka syksy 2021

Tavoitteet (OJ)

Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa

Sisältö (OJ)

Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.

Esitietovaatimukset (OJ)

Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.

Arviointikriteerit, tyydyttävä (1-2) (OJ)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit, hyvä (3-4) (OJ)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit, kiitettävä (5) (OJ)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Tenttien ja uusintatenttien ajankohdat

Opintojakson koe pidetään 13.10.2022 tuntiaikaan (alustava aika, voi tulla muutoksia).
Uusintaan osallistuminen edellyttää arvosanaa nolla.
1. uusinta xx.x.2022 klo 17.00-20.00 luokassa x.
2. uusinta/korotus xx.x.2022 klo 17.00-20.00 luokassa x.
Hyväksyttyä arvosanaa voi korottaa 2. uusintakokeessa.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Uusintakokeeseen ja korotukseen ilmoittaudutaan TAMKin tenttijärjestelmän kautta.

Arviointimenetelmät ja arvioinnin perusteet

Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan kokeilla ja viikoittain tarkastettavilla harjoitustehtävillä, joiden tekeminen vaikuttaa arvosanaan. Kotitehtäväpisteiden saamiseksi tehtävät on palautettava kirjallisesti (tarkemmat ohjeet Moodlessa). Opintojaksoon saattaa sisältyä myös ryhmässä tehtäviä osioita. Kokeen arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan, kotitehtävien aktiivista tekemistä (vähintään 30%) sekä kurssikokeeseen osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois.
Harjoitustehtävillä saa lisäpisteitä oheisen taulukon mukaan:
yli 30% : 1
yli 50%: 2
yli 70% : 3
yli 90% : 4
Harjoitustehtäväpisteet eivät vaikuta kurssin läpipääsyyn vaan niillä voi korottaa arvosanaa. Lopullinen arvosana määräytyy välikoepisteiden ja harjoitustehtäväpisteiden yhteismäärästä sekä osallistumisaktiivisuudesta. Harjoitustehtäväpisteitä ei huomioida enää uusinta- ja korotustenttien yhteydessä.
Arviointikriteeri -hylätty(0):
Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.

Arviointiasteikko

0-5

Opiskelumuodot ja opetusmenetelmät

lähiopetus
etäopetus
ryhmätyö
harjoitukset
välikokeet
uusintatentti

Oppimateriaalit

Opettajan jakama materiaali
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS-laskin.

Opiskelijan ajankäyttö ja kuormitus

Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-lähi/etäopetuksesta, jossa opettajaja mukana
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, STACK-tehtävät, opetusvideot)
-kokeesta
Opettajan pitämiä oppitunteja on n. 28 h

Sisällön jaksotus

-regressio
-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät

Lisätietoja opiskelijoille

Opetus alkaa 5.9. lukujärjestyksen mukaisesti.
Opintojaksoon on Moodle-toteutus. Oppitunnit pidetään ensisijaisesti lähiopetuksena.

Arviointikriteerit - hylätty (0) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.

Arviointikriteerit - tyydyttävä (1-2) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti, numeerisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä on vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit - hyvä (3-4) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit - kiitettävä (5) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut sekä käyttää oikeita matemaattisia merkintöjä. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Ilmoittautumisaika

27.12.2021 - 27.03.2022

Ajoitus

04.04.2022 - 29.05.2022

Laajuus

3 op

Virtuaaliosuus

3 op

Toteutustapa

Verkossa tapahtuva opiskelu

Opetuskielet
  • Suomi
Paikat

0 - 100

Opettaja
  • Ulla Miekkala
Vastuuhenkilö

Ulla Miekkala

Ryhmät
  • VAPAA
    Vapaasti valittavat opinnot

Tavoitteet (OJ)

Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa

Sisältö (OJ)

Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.

Esitietovaatimukset (OJ)

Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.

Arviointikriteerit, tyydyttävä (1-2) (OJ)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit, hyvä (3-4) (OJ)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit, kiitettävä (5) (OJ)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Aika ja paikka

Aloitus ke 6.4. klo 17. Katso Zoom-linkki Moodlesta
Itsenäinen opiskelu viikoittain annetusta aiheesta, opettaja tavattavissa kerran viikossa Zoomin kautta (ke klo 17-18) ja siloin voi kysyä viikon aiheesta ja viikkotehtävistä.
Koe on valvottu etäkoe Moodlen ja zoomin avulla. Opiskelijalla on oltava kamera ja mikrofoni kokeen aikana käytössä.

Tenttien ja uusintatenttien ajankohdat

Opintojakson koe pidetään ke 25.5.2022.

1. uusintakoe 8.6.2022 klo 17.00-20.00
2. uusinta/ korotus 15.6.2022 klo 17.00-20.00
Hyväksyttyä arvosanaa voi korottaa 2. uusintakokeessa.

Arviointimenetelmät ja arvioinnin perusteet

Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan tekemällä viikottaisia harjoitustehtäviä, automaattisesti arvioitavia tehtäviä ja loppukokeella. Viikoittaisilla harjoitustehtävillä voi koota 20% ja nettitehtävillä toiset 20% kokonaispisteistä sekä loput 60% loppukokeessa. Hyväksyttyyn suoritukseen riittää 40% kokonaispisteistä. Kokeiden arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys.

Arviointiasteikko

0-5

Opiskelumuodot ja opetusmenetelmät

Verkkokurssi: Itsenäinen opiskelu, videomateriaalit, palautettavat viikkotehtävät, automaattisesti arvioitavat tehtävät, viikoittain opettajan kontaktitunti etänä, valvottu etäkoe

Oppimateriaalit

Opintojakson oppimateriaalina on sähköistä oppimateriaalia ja opetusvideoita, jotka opiskelija löytää kurssin Moodle-alustalta

Opiskelijan ajankäyttö ja kuormitus

Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
- itsenäisestä työskentelystä (mm. teorian ja harjoitusten opiskelu oppimateriaalin ja opetusvideoiden avulla, viikkotehtävät, nettitehtävät)
-viikoittaisista tapaamisista keskiviikkoisin klo 17-18, jossa opettajalta voi Zoomin kautta kysyä viikon aiheesta (ei pakollinen)
-valvotusta etäkokeesta
Opettajan pitämiä kontaktitunteja on 11 h (koe mukaan lukien)

Sisällön jaksotus

-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät

Lisätietoja opiskelijoille

Opetus alkaa ke 6.4.2022
Opintojaksoon on Moodle-toteutus.

Ilmoittautumisaika

02.12.2021 - 11.01.2022

Ajoitus

10.01.2022 - 27.02.2022

Laajuus

3 op

Toteutustapa

Lähiopetus

Yksikkö

TAMK Matematiikka ja fysiikka

Opetuskielet
  • Suomi
Koulutus
  • Biotuotetekniikan tutkinto-ohjelma
Opettaja
  • Sara Nortunen
Vastuuhenkilö

Sara Nortunen

Ryhmät
  • 21BIOTB
    Biotuotetekniikan tutkinto-ohjelma, syksy 2021

Tavoitteet (OJ)

Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa

Sisältö (OJ)

Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.

Esitietovaatimukset (OJ)

Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.

Arviointikriteerit, tyydyttävä (1-2) (OJ)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit, hyvä (3-4) (OJ)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit, kiitettävä (5) (OJ)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Tenttien ja uusintatenttien ajankohdat

Opintojakson koe pidetään 23.2.2022 tuntiaikaan (alustava aika, voi tulla muutoksia).
Uusintaan osallistuminen edellyttää arvosanaa nolla.
1. uusinta alustavasti 30.3.2022 klo 16.00-19.00 luokassa x.
2. uusinta/korotus alustavasti 13.4.2022 klo 16.00-19.00 luokassa x.
Hyväksyttyä arvosanaa voi korottaa 2. uusintakokeessa.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Uusintakokeeseen ja korotukseen ilmoittaudutaan TAMKin tenttijärjestelmän kautta.

Arviointimenetelmät ja arvioinnin perusteet

Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan kokeilla ja viikoittain tarkastettavilla harjoitustehtävillä, joiden tekeminen vaikuttaa arvosanaan. Kotitehtäväpisteiden saamiseksi on osallistuttava kotitehtävien tarkistukseen (tarkemmat ohjeet Moodlessa). Opintojaksoon saattaa sisätyä myös ryhmässä tehtäviä osioita. Kokeen arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan, kotitehtävien aktiivista tekemistä (vähintään 30%) sekä kurssikokeeseen osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois.
Harjoitustehtävillä saa lisäpisteitä oheisen taulukon mukaan:
yli 30% : 1
yli 50%: 2
yli 70% : 3
yli 90% : 4
Harjoitustehtäväpisteet eivät vaikuta kurssin läpipääsyyn vaan niillä voi korottaa arvosanaa. Lopullinen arvosana määräytyy koepisteiden (viikkokokeet ja loppukoe) ja harjoitustehtäväpisteiden yhteismäärästä sekä osallistumisaktiivisuudesta. Harjoitustehtäväpisteitä ei huomioida enää uusinta- ja korotustenttien yhteydessä.
Arviointikriteeri -hylätty(0):
Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.

Arviointiasteikko

0-5

Opiskelumuodot ja opetusmenetelmät

lähiopetus
etäopetus
ryhmätyö
harjoitukset
viikkokokeet
loppukoe
uusintatentti

Oppimateriaalit

Opettajan jakama materiaali
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS-laskin.

Opiskelijan ajankäyttö ja kuormitus

Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-lähi/etäopetuksesta, jossa opettajaja mukana
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, STACK-tehtävät, opetusvideot)
-kokeesta
Opettajan pitämiä oppitunteja on n. 28 h

Sisällön jaksotus

-regressio
-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät

Lisätietoja opiskelijoille

Opetus alkaa ke 12.1. lukujärjestyksen mukaisesti.
Opintojaksoon on Moodle-toteutus. Oppitunnit pidetään kurssin alussa etäopetuksena (linkki Moodle-sivulla), jatkossa mahdollisesti lähiopetuksena.

Arviointikriteerit - hylätty (0) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.

Arviointikriteerit - tyydyttävä (1-2) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti, numeerisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä on vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit - hyvä (3-4) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit - kiitettävä (5) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut sekä käyttää oikeita matemaattisia merkintöjä. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Ilmoittautumisaika

02.12.2021 - 07.01.2022

Ajoitus

10.01.2022 - 06.03.2022

Laajuus

3 op

Toteutustapa

Lähiopetus

Yksikkö

Rakennustekniikka

Toimipiste

TAMK Pääkampus

Opetuskielet
  • Suomi
Koulutus
  • Rakennustekniikan tutkinto-ohjelma
Opettaja
  • Pia Ruokonen-Kaukolinna
Vastuuhenkilö

Pia Ruokonen-Kaukolinna

Ryhmät
  • 21RTA
    Rakennustekniikka

Tavoitteet (OJ)

Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa

Sisältö (OJ)

Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.

Esitietovaatimukset (OJ)

Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.

Arviointikriteerit, tyydyttävä (1-2) (OJ)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit, hyvä (3-4) (OJ)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit, kiitettävä (5) (OJ)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Tenttien ja uusintatenttien ajankohdat

Opintojakso suoritetaan kahdella välikokeella, joiden ajat ilmoitetaan kurssin aikana. Välikokeita/viikkokokeita ei voi uusia eikä korottaa. Koko kurssin uusintakoe järjestetään seuraavasti:
Uusintakokeet:
1. uusintakoe 30.3.2022 klo 17-20 ( paikka tarkentuu myöhemmin)
2. uusintakoe/ korotus 13.4.2022 klo 17-20 (paikka tarkentuu myöhemmin)
Uusinnat ja korotukset ovat vain ja ainoastaan tässä ilmoitettuna aikana, ei siis myöhemmin esim. seuraavana vuonna.
Uusintakokeeseen ja korotukseen ilmoittaudutaan opettajan ilmoittamalla tavalla.
Uusintaan osallistuminen edellyttää arvosanaa 0.

Yleiseti kokeesta:
Sairastapauksissa vaaditaan lääkärintodistus.
Poissaolo kokeesta vastaa hylättyä suoritusta.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.

Arviointimenetelmät ja arvioinnin perusteet

Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan välikokeilla, nettitehtävillä ja viikoittain tarkastettavilla harjoitustehtävillä,

Arvosteluun vaikuttavat nettitehtävät 15 %, kotitehtävät 10 % ja välikokeet 75 % . Kokeiden arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan, nettitehtävien ja kotitehtävien tekoa sekä välikokeisiin osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois. Arvosanan 1 saa pistemäärällä, joka on 30 % kurssin eri arviointimuotojen yhteenlasketusta maksimipistemäärästä.

Harjoitustehtävillä saa lisäpisteitä oheisen taulukon mukaan:
yli 30% : 1
yli 50% : 2
yli 70% : 3
yli 90% : 4
Kotitehtäväpisteiden saamiseksi on osallistuttava kotitehtävien tarkistukseen (tarkemmat ohjeet Moodlessa).

Uusinta- ja korotus:
Välikokeita/viikkokokeita ei voi uusia. Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä-, nettitehtävä- eikä välikoepisteet.

Arviointikriteeri - hylätty (0)
Opiskelija osallistuu säännöllisesti opetukseen ja sen työmuotoihin, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Mikäli edellä mainitut kriteerit eivät täyty, niin opiskelija poistetaan toteutukselta. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.

Arviointiasteikko

0-5

Opiskelumuodot ja opetusmenetelmät

Lähiopetus/ etäopetus zoomin kautta, itsenäinen opiskelu, tuntiharjoitukset ja kotitehtävät, videomateriaalit, nettitehtävät (STACK-tehtävät), viikkokokeet, tentti

Oppimateriaalit

Opettajan Moodlessa jakama materiaali (pdf-materiaalit, videot, interaktiiviset tehtävät)
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS/ TI-nspire CX II CAS -laskin.

Opiskelijan ajankäyttö ja kuormitus

Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-opetuksesta, jossa opettajaja mukana
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, nettitehtävät, opetusvideot)
-kokeista
Opettajan pitämiä lähitunteja on n. 30 h

Sisällön jaksotus

-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät

Lisätietoja opiskelijoille

Opetus alkaa viikolla 2 lukujärjestyksen mukaisesti.
Opintojaksoon on Moodle-toteutus. Opettaja lähettää Moodle-avaimen kurssille ilmoittautuneille ennen kurssia alkua sähköpostilla .

Arviointikriteerit - hylätty (0) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.

Arviointikriteerit - tyydyttävä (1-2) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti, numeerisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia.Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä on vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit - hyvä (3-4) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit - kiitettävä (5) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut sekä käyttää oikeita matemaattisia merkintöjä. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Ilmoittautumisaika

25.11.2021 - 09.01.2022

Ajoitus

10.01.2022 - 27.02.2022

Laajuus

3 op

Toteutustapa

Lähiopetus

Yksikkö

TAMK Matematiikka ja fysiikka

Toimipiste

TAMK Pääkampus

Opetuskielet
  • Suomi
Koulutus
  • Laboratoriotekniikan tutkinto-ohjelma
Opettaja
  • Jukka Suominen
Vastuuhenkilö

Jukka Suominen

Ryhmät
  • 21LATE
    Laboratoriotekniikka 2021

Tavoitteet (OJ)

Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa

Sisältö (OJ)

Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.

Esitietovaatimukset (OJ)

Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.

Arviointikriteerit, tyydyttävä (1-2) (OJ)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit, hyvä (3-4) (OJ)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit, kiitettävä (5) (OJ)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Aika ja paikka

Ajankohdat ja paikat ilmoitettu TUNIMoodlessa / lukujärjestyksissä

Tenttien ja uusintatenttien ajankohdat

Opintojakson koe pidetään 23.02.2022 klo 14.15-17.00. luokassa B4-27. (Tarvittaessa myös muissa luokissa.)
1. uusinta / korotus 15.03.2022 klo 08.15-11.00.
2. uusinta / korotus 08.04.2022 klo 08.15-11.00
Ilmoittautuminen uusintakokeisiin viimeistään 2 vuorokautta ennen kokeen alkamista. sähköpostitse.
Hyväksyttyä arvosanaa voi yrittää korottaa vain kerran.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.

Arviointimenetelmät ja arvioinnin perusteet

Opintojakso arvioidaan asteikolla 0-5.

Kotitehtävistä on mahdollista saada 1 piste / palautuskerta, yhteensä 8 pistettä. Kokeen maksimipistemäärä 42 pistettä. Yhteispistemäärä on täten 50 pistettä.

Arvosana määräytyy kotitehtävien ja kokeen yhteispistemäärän perusteella seuraavasti:

0 pistettä, arvosana 0
12,5 pistettä, arvosana 1
20 pistettä, arvosana 2
27,5 pistettä, arvosana 3
35 pistettä, arvosana 4
42,5 pistettä, arvosana 5

Arviointiasteikko

0-5

Opiskelumuodot ja opetusmenetelmät

- etäopetus
- tuntitehtävät, kotitehtävät
- lähikoe

Oppimateriaalit

Opettajan jakama materiaali Moodlessa
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS-laskin (tai vastaava)

Opiskelijan ajankäyttö ja kuormitus

Opiskelijan keskimääräinen työmäärä on 81 h, joka koostuu:
-etäopetuksesta
-itsenäisestä työskentelystä (mm. kotitehtävät, opetusvideot)
-kokeesta
Opettajan pitämiä lähitunteja koe mukaan lukien on 27 h.

Sisällön jaksotus

-erotusosamäärä ja derivaatta
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät
-regressio

Toteutuksen valinnaiset suoritustavat

-

Harjoittelu- ja työelämäyhteistyö

-

Kansainvälisyys

-

Lisätietoja opiskelijoille

Opetus alkaa 13.01.2022 lukujärjestyksen mukaisesti.

Arviointikriteerit - hylätty (0) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Katso kohta "Arviointimenetelmät ja arvioinnin perusteet".

Arviointikriteerit - tyydyttävä (1-2) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Katso kohta "Arviointimenetelmät ja arvioinnin perusteet".

Arviointikriteerit - hyvä (3-4) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Katso kohta "Arviointimenetelmät ja arvioinnin perusteet".

Arviointikriteerit - kiitettävä (5) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Katso kohta "Arviointimenetelmät ja arvioinnin perusteet".

Ilmoittautumisaika

01.12.2021 - 17.01.2022

Ajoitus

10.01.2022 - 27.02.2022

Laajuus

3 op

Toteutustapa

Lähiopetus

Yksikkö

Rakennustekniikka

Toimipiste

TAMK Pääkampus

Opetuskielet
  • Suomi
Koulutus
  • Rakennustekniikan tutkinto-ohjelma
Opettaja
  • Anja Kuronen
Vastuuhenkilö

Anja Kuronen

Ryhmät
  • 21RTC
    Rakennustekniikka

Tavoitteet (OJ)

Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa

Sisältö (OJ)

Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.

Esitietovaatimukset (OJ)

Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.

Arviointikriteerit, tyydyttävä (1-2) (OJ)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit, hyvä (3-4) (OJ)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit, kiitettävä (5) (OJ)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Aika ja paikka

Lukujärjestyksen mukaisesti alkaen viikolla 2.

Tenttien ja uusintatenttien ajankohdat

Opintojakson tuntitestit (2 kpl)
26.1. Raja-arvo ja graafinen derivointi
9.2. Symbolinen derivointi
ja
23.2. loppukoe normaaliin tuntiaikaan.

Uusintakokeet:
1. uusintakoe 30.3.2022 klo 17.00-20.00 (aika ja paikka tarkentuu myöhemmin)
2. uusinta/ korotus 13.4.2022 klo 17.00-20.00 (aika ja paikka tarkentuu myöhemmin)
Uusintaan osallistuminen edellyttää arvosanaa nolla.
Hyväksyttyä arvosanaa voi korottaa 2. uusintakokeessa.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Uusintakokeeseen ja korotukseen ilmoittaudutaan opettajan ilmoittamalla tavalla.

Yleiseti kokeesta:
Sairastapauksissa vaaditaan lääkärintodistus.
Poissaolo kokeesta vastaa hylättyä suoritusta.

Arviointimenetelmät ja arvioinnin perusteet

Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan tuntitesteillä, loppukokeella ja viikoittain tarkastettavilla kotitehtävillä, joiden tekeminen vaikuttaa arvosanaan.
Tuntitesteistä pisteitä 6+6 ja loppukokeesta 18 pistettä. Varma läpipääsy on 40 % kokonaispistemäärästä.
Kotitehtäväpisteiden saamiseksi on osallistuttava kotitehtävien tarkistukseen (tarkemmat ohjeet Moodlessa).Opintojaksoon saattaa sisätyä myös ryhmässä tehtäviä osioita. Kokeen arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan sekä kurssikokeeseen osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois.
Kotitehtävillä saa lisäpisteitä oheisen taulukon mukaan:
yli 30% : 1
yli 50%: 2
yli 70% : 3
yli 90% : 4
Lopullinen arvosana määräytyy koepisteiden ja kotitehtäväpisteiden yhteismäärästä sekä osallistumisaktiivisuudesta.
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä- eikä tuntitestipisteet.

Arviointiasteikko

0-5

Opiskelumuodot ja opetusmenetelmät

Lähiopetus / etäopetus Zoomin kautta tilanteen mukaan, itsenäinen opiskelu, tuntiharjoitukset ja kotitehtävät, videomateriaalit, nettitehtävät, tuntitestit ja loppukoe.

Oppimateriaalit

Opettajan Moodlessa jakama materiaali.
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX II CAS -laskin.

Opiskelijan ajankäyttö ja kuormitus

Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-opetuksesta, jossa opettajaja mukana
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, nettitehtävät, opetusvideot)
-kokeesta
Opettajan pitämiä oppitunteja on n. 28 h

Sisällön jaksotus

-regressio
-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät

Toteutuksen valinnaiset suoritustavat

Ei ole

Harjoittelu- ja työelämäyhteistyö

Ei ole

Kansainvälisyys

Ei ole

Lisätietoja opiskelijoille

Opintojaksoon on Moodle-toteutus.

Arviointikriteerit - hylätty (0) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Opiskelija osallistuu säännöllisesti opetukseen ja suorittaa opintojakson tuntitestit ja loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.

Arviointikriteerit - tyydyttävä (1-2) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti, numeerisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä on vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit - hyvä (3-4) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit - kiitettävä (5) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut sekä käyttää oikeita matemaattisia merkintöjä. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Ilmoittautumisaika

01.12.2021 - 07.01.2022

Ajoitus

10.01.2022 - 07.03.2022

Laajuus

3 op

Toteutustapa

Lähiopetus

Yksikkö

Rakennustekniikka

Toimipiste

TAMK Pääkampus

Opetuskielet
  • Suomi
Koulutus
  • Rakennustekniikan tutkinto-ohjelma
Opettaja
  • Pia Ruokonen-Kaukolinna
Vastuuhenkilö

Pia Ruokonen-Kaukolinna

Ryhmät
  • 21RTD
    Rakennustekniikka

Tavoitteet (OJ)

Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa

Sisältö (OJ)

Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.

Esitietovaatimukset (OJ)

Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.

Arviointikriteerit, tyydyttävä (1-2) (OJ)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit, hyvä (3-4) (OJ)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit, kiitettävä (5) (OJ)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Tenttien ja uusintatenttien ajankohdat

Opintojakso suoritetaan kahdella välikokeella, joiden ajat ilmoitetaan kurssin aikana. Välikokeita/viikkokokeita ei voi uusia eikä korottaa. Koko kurssin uusintakoe järjestetään seuraavasti:

1. uusintakoe 30.3.2022 klo 17-20 ( paikka tarkentuu myöhemmin)
2. uusintakoe/ korotus 13.4.2022 klo 17-20 (paikka tarkentuu myöhemmin)
Uusinnat ja korotukset ovat vain ja ainoastaan tässä ilmoitettuna aikana, ei siis myöhemmin esim. seuraavana vuonna.
Uusintakokeeseen ja korotukseen ilmoittaudutaan opettajan ilmoittamalla tavalla.
Uusintaan osallistuminen edellyttää arvosanaa 0.

Yleiseti kokeesta:
Sairastapauksissa vaaditaan lääkärintodistus.
Poissaolo kokeesta vastaa hylättyä suoritusta.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.

Arviointimenetelmät ja arvioinnin perusteet

Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan välikokeilla, nettitehtävillä ja viikoittain tarkastettavilla harjoitustehtävillä,

Arvosteluun vaikuttavat nettitehtävät 15 %, kotitehtävät 10 % ja välikokeet 75 % . Kokeiden arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan, nettitehtävien ja kotitehtävien tekoa sekä välikokeisiin osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois. Arvosanan 1 saa pistemäärällä, joka on 30 % kurssin eri arviointimuotojen yhteenlasketusta maksimipistemäärästä.

Harjoitustehtävillä saa lisäpisteitä oheisen taulukon mukaan:
yli 30% : 1
yli 50% : 2
yli 70% : 3
yli 90% : 4
Kotitehtäväpisteiden saamiseksi on osallistuttava kotitehtävien tarkistukseen (tarkemmat ohjeet Moodlessa).

Uusinta- ja korotus:
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä-, nettitehtävä- eikä välikoepisteet.

Arviointikriteeri - hylätty (0)
Opiskelija osallistuu säännöllisesti opetukseen ja sen työmuotoihin, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Mikäli edellä mainitut kriteerit eivät täyty, niin opiskelija poistetaan toteutukselta. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.

Arviointiasteikko

0-5

Opiskelumuodot ja opetusmenetelmät

Lähiopetus/ etäopetus zoomin kautta, itsenäinen opiskelu, tuntiharjoitukset ja kotitehtävät, videomateriaalit, nettitehtävät (STACK-tehtävät), viikkokokeet, tentti

Oppimateriaalit

Opettajan Moodlessa jakama materiaali (pdf-materiaalit, videot, interaktiiviset tehtävät)
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS/ TI-nspire CX II CAS -laskin.

Opiskelijan ajankäyttö ja kuormitus

Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-opetuksesta, jossa opettajaja mukana
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, nettitehtävät, opetusvideot)
-kokeista
Opettajan pitämiä lähitunteja on n. 30 h

Sisällön jaksotus

-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät

Lisätietoja opiskelijoille

Opetus alkaa viikolla 2 lukujärjestyksen mukaisesti.
Opintojaksoon on Moodle-toteutus. Opettaja lähettää Moodle-avaimen kurssille ilmoittautuneille ennen kurssia alkua sähköpostilla .

Arviointikriteerit - hylätty (0) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.

Arviointikriteerit - tyydyttävä (1-2) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti, numeerisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia.Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä on vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit - hyvä (3-4) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit - kiitettävä (5) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut sekä käyttää oikeita matemaattisia merkintöjä. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Ilmoittautumisaika

02.12.2021 - 11.01.2022

Ajoitus

10.01.2022 - 06.03.2022

Laajuus

3 op

Toteutustapa

Lähiopetus

Yksikkö

TAMK Matematiikka ja fysiikka

Toimipiste

TAMK Pääkampus

Opetuskielet
  • Suomi
Koulutus
  • Konetekniikan tutkinto-ohjelma
Opettaja
  • Kirsi-Maria Rinneheimo
Vastuuhenkilö

Kirsi-Maria Rinneheimo

Ryhmät
  • 21I112A
    Konetekniikka 2021

Tavoitteet (OJ)

Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa

Sisältö (OJ)

Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.

Esitietovaatimukset (OJ)

Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.

Arviointikriteerit, tyydyttävä (1-2) (OJ)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit, hyvä (3-4) (OJ)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit, kiitettävä (5) (OJ)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Tenttien ja uusintatenttien ajankohdat

Opintojakso suoritetaan kahdella välikokeella, joiden ajat ilmoitetaan kurssin aikana.
Uusintakokeet:
1. uusintakoe 30.3.2022 klo 17-20 ( paikka tarkentuu myöhemmin)
2. uusintakoe/ korotus 13.4.2022 klo 17-20 (paikka tarkentuu myöhemmin)
Uusinnat ja korotukset ovat vain ja ainoastaan tässä ilmoitettuna aikana, ei siis myöhemmin esim. seuraavana vuonna.
Uusintakokeeseen ja korotukseen ilmoittaudutaan opettajan ilmoittamalla tavalla.
Uusintaan osallistuminen edellyttää arvosanaa 0.

Yleiseti kokeesta:
Sairastapauksissa vaaditaan lääkärintodistus.
Poissaolo kokeesta vastaa hylättyä suoritusta.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.

Arviointimenetelmät ja arvioinnin perusteet

Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan välikokeilla, nettitehtävillä ja viikoittain tarkastettavilla harjoitustehtävillä,

Arviointiin vaikuttavat nettitehtävät 15 %, kotitehtävät 10 % ja välikokeet 75 % . Kokeiden arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan, nettitehtävien ja kotitehtävien tekoa sekä välikokeisiin osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois. Arvosanan 1 saa pistemäärällä, joka on 30 % kurssin eri arviointimuotojen yhteenlasketusta maksimipistemäärästä.

Harjoitustehtävillä saa lisäpisteitä oheisen taulukon mukaan:
yli 30% : 1
yli 50% : 2
yli 70% : 3
yli 90% : 4
Kotitehtäväpisteiden saamiseksi on osallistuttava kotitehtävien tarkistukseen (tarkemmat ohjeet Moodlessa).

Uusinta- ja korotus:
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä-, nettitehtävä- eikä välikoepisteet.

Arviointikriteeri - hylätty (0)
Opiskelija osallistuu säännöllisesti opetukseen ja sen työmuotoihin, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Mikäli edellä mainitut kriteerit eivät täyty, niin opiskelija poistetaan toteutukselta. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.

Arviointiasteikko

0-5

Opiskelumuodot ja opetusmenetelmät

Lähiopetus/ etäopetus zoomin kautta, itsenäinen opiskelu, tuntiharjoitukset ja kotitehtävät, videomateriaalit, nettitehtävät (STACK-tehtävät), välikokeet, tentti

Oppimateriaalit

Opettajan Moodlessa jakama materiaali (sähköinen PLUSSA-materiaali, videot, interaktiiviset tehtävät, pdf-materiaalit)
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS/ TI-nspire CX II CAS -laskin.

Opiskelijan ajankäyttö ja kuormitus

Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-opetuksesta, jossa opettajaja mukana
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, nettitehtävät, opetusvideot)
-kokeista
Opettajan pitämiä lähitunteja on n. 30 h

Sisällön jaksotus

-regressio
-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät

Lisätietoja opiskelijoille

Opetus alkaa viikolla 2 lukujärjestyksen mukaisesti.
Opintojaksoon on Moodle-toteutus. Opettaja lähettää Moodle-avaimen kurssille ilmoittautuneille ennen kurssia alkua sähköpostilla .

Arviointikriteerit - hylätty (0) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.

Arviointikriteerit - tyydyttävä (1-2) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti, numeerisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia.Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä on vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit - hyvä (3-4) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit - kiitettävä (5) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut sekä käyttää oikeita matemaattisia merkintöjä. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Ilmoittautumisaika

02.12.2021 - 11.01.2022

Ajoitus

10.01.2022 - 27.02.2022

Laajuus

3 op

Toteutustapa

Lähiopetus

Yksikkö

TAMK Matematiikka ja fysiikka

Toimipiste

TAMK Pääkampus

Opetuskielet
  • Suomi
Koulutus
  • Konetekniikan tutkinto-ohjelma
Opettaja
  • Ulla Miekkala
Vastuuhenkilö

Ulla Miekkala

Ryhmät
  • 21I112B
    Konetekniikka 2021

Tavoitteet (OJ)

Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa

Sisältö (OJ)

Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.

Esitietovaatimukset (OJ)

Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.

Arviointikriteerit, tyydyttävä (1-2) (OJ)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit, hyvä (3-4) (OJ)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit, kiitettävä (5) (OJ)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Tenttien ja uusintatenttien ajankohdat

Opintojakson koe pidetään 2x.2.2022 tuntiaikaan (alustava aika, voi tulla muutoksia).
Uusintaan osallistuminen edlyttää arvosanaa nolla.
1. uusinta 30.3.2022 klo 17.00-20.00 (paikka ilmoitetaan ennen tenttiä)
2. uusinta/ korotus 13.4.2022 klo 17.00-20.00 (paikka ilmoitetaan ennen tenttiä)
Hyväksyttyä arvosanaa voi korottaa 2. uusintakokeessa.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Uusintakokeeseen ja korotukseen ilmoittaudutaan TAMKin tenttijärjestelmän kautta.

Arviointimenetelmät ja arvioinnin perusteet

Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan kokeilla, nettitehtävillä ja viikoittain tarkastettavilla harjoitustehtävillä, joiden tekeminen vaikuttaa arvosanaan. Kotitehtäväpisteiden saamiseksi on osallistuttava kotitehtävien tarkistukseen (tarkemmat ohjeet Moodlessa).Opintojaksoon saattaa sisältyä myös ryhmässä tehtäviä osioita. Kokeiden arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan, nettitehtävien ja kotitehtävien tekoa sekä kurssikokeisiin osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois. Varma läpipääsyraja on 1/3 kurssikokeen ja nettitehtävien yhteenlasketusta maksimipistemäärästä.
Harjoitustehtävillä saa lisäpisteitä oheisen taulukon mukaan:
yli 30% : 1
yli 50%: 2
yli 70% : 3
yli 90% : 4
Harjoitustehtäväpisteet eivät vaikuta kurssin läpipääsyyn vaan niillä voi korottaa arvosanaa. Lopullinen arvosana määräytyy koepisteiden, nettitehtävien ja harjoitustehtäväpisteiden yhteismäärästä sekä osallistumisaktiivisuudesta. Harjoitustehtäväpisteitä ei huomioida enää uusinta- ja korotustenttien yhteydessä.
Arviointikriteeri -hylätty(0):
Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson kokeisiin, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.

Arviointiasteikko

0-5

Opiskelumuodot ja opetusmenetelmät

Lähiopetus (aloitus etäopetuksena zoomin avulla), itsenäinen opiskelu, tuntiharjoitukset ja kotitehtävät, videomateriaalit, nettitehtävät, tentti

Oppimateriaalit

Opettajan Moodlessa jakama materiaali (sähköinen PLUSSA-materiaali, videot, interaktiiviset tehtävät, pdf-materiaalit, STACK-tehtävät)
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS/ TI-nspire CX II CAS -laskin.

Opiskelijan ajankäyttö ja kuormitus

Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-opetuksesta, jossa opettajaja mukana (Zoom-tunnit)
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, nettitehtävät, opetusvideot)
-kokeesta
Opettajan pitämiä lähitunteja on n. 30 h

Sisällön jaksotus

-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät

Lisätietoja opiskelijoille

Opetus alkaa viikolla 2 lukujärjestyksen mukaisesti.
Opintojaksoon on Moodle-toteutus.

Arviointikriteerit - hylätty (0) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson kokeisiin, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.

Arviointikriteerit - tyydyttävä (1-2) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti, numeerisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia.Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä on vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit - hyvä (3-4) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit - kiitettävä (5) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut sekä käyttää oikeita matemaattisia merkintöjä. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Ilmoittautumisaika

02.12.2021 - 11.01.2022

Ajoitus

10.01.2022 - 26.02.2022

Laajuus

3 op

Toteutustapa

Lähiopetus

Yksikkö

TAMK Matematiikka ja fysiikka

Toimipiste

TAMK Pääkampus

Opetuskielet
  • Suomi
Koulutus
  • Konetekniikan tutkinto-ohjelma
Opettaja
  • Sara Nortunen
Vastuuhenkilö

Sara Nortunen

Ryhmät
  • 21I112C
    Konetekniikka 2021

Tavoitteet (OJ)

Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa

Sisältö (OJ)

Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.

Esitietovaatimukset (OJ)

Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.

Arviointikriteerit, tyydyttävä (1-2) (OJ)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit, hyvä (3-4) (OJ)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit, kiitettävä (5) (OJ)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Tenttien ja uusintatenttien ajankohdat

Opintojakson koe pidetään 24.2.2022 tuntiaikaan (alustava aika, voi tulla muutoksia).
Uusintaan osallistuminen edellyttää arvosanaa nolla.
1. uusinta alustavasti 30.3.2022 klo 16.00-19.00 luokassa x.
2. uusinta/korotus alustavasti 13.4.2022 klo 16.00-19.00 luokassa x.
Hyväksyttyä arvosanaa voi korottaa 2. uusintakokeessa.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Uusintakokeeseen ja korotukseen ilmoittaudutaan TAMKin tenttijärjestelmän kautta.

Arviointimenetelmät ja arvioinnin perusteet

Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan kokeilla ja viikoittain tarkastettavilla harjoitustehtävillä, joiden tekeminen vaikuttaa arvosanaan. Kotitehtäväpisteiden saamiseksi on osallistuttava kotitehtävien tarkistukseen (tarkemmat ohjeet Moodlessa). Opintojaksoon saattaa sisätyä myös ryhmässä tehtäviä osioita. Kokeen arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan, kotitehtävien aktiivista tekemistä (vähintään 30%) sekä kurssikokeeseen osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois.
Harjoitustehtävillä saa lisäpisteitä oheisen taulukon mukaan:
yli 30% : 1
yli 50%: 2
yli 70% : 3
yli 90% : 4
Harjoitustehtäväpisteet eivät vaikuta kurssin läpipääsyyn vaan niillä voi korottaa arvosanaa. Lopullinen arvosana määräytyy koepisteiden (viikkokokeet ja loppukoe) ja harjoitustehtäväpisteiden yhteismäärästä sekä osallistumisaktiivisuudesta. Harjoitustehtäväpisteitä ei huomioida enää uusinta- ja korotustenttien yhteydessä.
Arviointikriteeri -hylätty(0):
Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.

Arviointiasteikko

0-5

Opiskelumuodot ja opetusmenetelmät

lähiopetus
etäopetus
ryhmätyö
harjoitukset
viikkokokeet
loppukoe
uusintatentti

Oppimateriaalit

Opettajan jakama materiaali
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS-laskin.

Opiskelijan ajankäyttö ja kuormitus

Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-lähi/etäopetuksesta, jossa opettajaja mukana
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, STACK-tehtävät, opetusvideot)
-kokeesta
Opettajan pitämiä oppitunteja on n. 28 h

Sisällön jaksotus

-regressio
-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät

Lisätietoja opiskelijoille

Opetus alkaa to 13.1. lukujärjestyksen mukaisesti.
Opintojaksoon on Moodle-toteutus. Oppitunnit pidetään kurssin alussa etäopetuksena (linkki Moodle-sivulla), jatkossa mahdollisesti lähiopetuksena.

Arviointikriteerit - hylätty (0) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.

Arviointikriteerit - tyydyttävä (1-2) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti, numeerisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä on vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit - hyvä (3-4) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit - kiitettävä (5) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut sekä käyttää oikeita matemaattisia merkintöjä. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Ilmoittautumisaika

01.12.2021 - 17.01.2022

Ajoitus

10.01.2022 - 06.03.2022

Laajuus

3 op

Toteutustapa

Lähiopetus

Yksikkö

Talotekniikka

Toimipiste

TAMK Pääkampus

Opetuskielet
  • Suomi
Paikat

1 - 45

Koulutus
  • Talotekniikan tutkinto-ohjelma, LVI-talotekniikka
Opettaja
  • Kirsi-Maria Rinneheimo
Vastuuhenkilö

Kirsi-Maria Rinneheimo

Ryhmät
  • 21I253
    LVI-talotekniikka

Tavoitteet (OJ)

Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa

Sisältö (OJ)

Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.

Esitietovaatimukset (OJ)

Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.

Arviointikriteerit, tyydyttävä (1-2) (OJ)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit, hyvä (3-4) (OJ)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit, kiitettävä (5) (OJ)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Tenttien ja uusintatenttien ajankohdat

Opintojakso suoritetaan kahdella välikokeella, joiden ajat ilmoitetaan kurssin aikana.
Uusintakokeet:
1. uusintakoe 30.3.2022 klo 17-20 ( paikka tarkentuu myöhemmin)
2. uusintakoe/ korotus 13.4.2022 klo 17-20 (paikka tarkentuu myöhemmin)
Uusinnat ja korotukset ovat vain ja ainoastaan tässä ilmoitettuna aikana, ei siis myöhemmin esim. seuraavana vuonna.
Uusintakokeeseen ja korotukseen ilmoittaudutaan opettajan ilmoittamalla tavalla.
Uusintaan osallistuminen edellyttää arvosanaa 0.

Yleiseti kokeesta:
Sairastapauksissa vaaditaan lääkärintodistus.
Poissaolo kokeesta vastaa hylättyä suoritusta.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.

Arviointimenetelmät ja arvioinnin perusteet

Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan välikokeilla, nettitehtävillä ja viikoittain tarkastettavilla harjoitustehtävillä,

Arviointiin vaikuttavat nettitehtävät 15 %, kotitehtävät 10 % ja välikokeet 75 % . Kokeiden arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan, nettitehtävien ja kotitehtävien tekoa sekä välikokeisiin osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois. Arvosanan 1 saa pistemäärällä, joka on 30 % kurssin eri arviointimuotojen yhteenlasketusta maksimipistemäärästä.

Harjoitustehtävillä saa lisäpisteitä oheisen taulukon mukaan:
yli 30% : 1
yli 50% : 2
yli 70% : 3
yli 90% : 4
Kotitehtäväpisteiden saamiseksi on osallistuttava kotitehtävien tarkistukseen (tarkemmat ohjeet Moodlessa).

Uusinta- ja korotus:
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä-, nettitehtävä- eikä välikoepisteet.

Arviointikriteeri - hylätty (0)
Opiskelija osallistuu säännöllisesti opetukseen ja sen työmuotoihin, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Mikäli edellä mainitut kriteerit eivät täyty, niin opiskelija poistetaan toteutukselta. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.

Arviointiasteikko

0-5

Opiskelumuodot ja opetusmenetelmät

Lähiopetus/ etäopetus zoomin kautta, itsenäinen opiskelu, tuntiharjoitukset ja kotitehtävät, videomateriaalit, nettitehtävät (STACK-tehtävät), välikokeet, tentti

Oppimateriaalit

Opettajan Moodlessa jakama materiaali (sähköinen PLUSSA-materiaali, videot, interaktiiviset tehtävät, pdf-materiaalit)
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS/ TI-nspire CX II CAS -laskin.

Opiskelijan ajankäyttö ja kuormitus

Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-opetuksesta, jossa opettajaja mukana
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, nettitehtävät, opetusvideot)
-kokeista
Opettajan pitämiä lähitunteja on n. 30 h

Sisällön jaksotus

-regressio
-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät

Lisätietoja opiskelijoille

Opetus alkaa viikolla 2 lukujärjestyksen mukaisesti.
Opintojaksoon on Moodle-toteutus. Opettaja lähettää Moodle-avaimen kurssille ilmoittautuneille ennen kurssia alkua sähköpostilla .

Arviointikriteerit - hylätty (0) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.

Arviointikriteerit - tyydyttävä (1-2) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti, numeerisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia.Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä on vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit - hyvä (3-4) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit - kiitettävä (5) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut sekä käyttää oikeita matemaattisia merkintöjä. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Ilmoittautumisaika

02.12.2021 - 11.01.2022

Ajoitus

10.01.2022 - 26.02.2022

Laajuus

3 op

Toteutustapa

Lähiopetus

Yksikkö

Avoin AMK

Toimipiste

TAMK Pääkampus

Opetuskielet
  • Suomi
Koulutus
  • Avoin ammattikorkeakoulu
Opettaja
  • Anja Kuronen
Vastuuhenkilö

Anja Kuronen

Ryhmät
  • 21AVOTT
    Teollisuusteknologiayksikön avoimen polkuryhmä

Tavoitteet (OJ)

Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa

Sisältö (OJ)

Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.

Esitietovaatimukset (OJ)

Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.

Arviointikriteerit, tyydyttävä (1-2) (OJ)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit, hyvä (3-4) (OJ)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit, kiitettävä (5) (OJ)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Aika ja paikka

Lukujärjestyksen mukaisesti alkaen viikolla 2.

Tenttien ja uusintatenttien ajankohdat

Opintojakson tuntitestit (2 kpl)
31.1. Raja-arvo ja graafinen derivointi
14.2. Symbolinen derivointi
ja
25.2. loppukoe normaaliin tuntiaikaan.

Uusintakokeet:
1. uusintakoe 30.3.2022 klo 17.00-20.00 (aika ja paikka tarkentuu myöhemmin)
2. uusinta/ korotus 13.4.2022 klo 17.00-20.00 (aika ja paikka tarkentuu myöhemmin)
Uusintaan osallistuminen edellyttää arvosanaa nolla.
Hyväksyttyä arvosanaa voi korottaa 2. uusintakokeessa.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Uusintakokeeseen ja korotukseen ilmoittaudutaan opettajan ilmoittamalla tavalla.

Yleiseti kokeesta:
Sairastapauksissa vaaditaan lääkärintodistus.
Poissaolo kokeesta vastaa hylättyä suoritusta.

Arviointimenetelmät ja arvioinnin perusteet

Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan tuntitesteillä, loppukokeella ja viikoittain tarkastettavilla kotitehtävillä, joiden tekeminen vaikuttaa arvosanaan.
Tuntitesteistä pisteitä 6+6 ja loppukokeesta 18 pistettä. Varma läpipääsy on 40 % kokonaispistemäärästä.
Kotitehtäväpisteiden saamiseksi on osallistuttava kotitehtävien tarkistukseen (tarkemmat ohjeet Moodlessa).Opintojaksoon saattaa sisätyä myös ryhmässä tehtäviä osioita. Kokeen arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan sekä kurssikokeeseen osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois.
Kotitehtävillä saa lisäpisteitä oheisen taulukon mukaan:
yli 30% : 1
yli 50%: 2
yli 70% : 3
yli 90% : 4
Lopullinen arvosana määräytyy koepisteiden ja kotitehtäväpisteiden yhteismäärästä sekä osallistumisaktiivisuudesta.
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä- eikä tuntitestipisteet.

Arviointiasteikko

0-5

Opiskelumuodot ja opetusmenetelmät

Lähiopetus / etäopetus Zoomin kautta tilanteen mukaan, itsenäinen opiskelu, tuntiharjoitukset ja kotitehtävät, videomateriaalit, nettitehtävät, tuntitestit ja loppukoe.

Oppimateriaalit

Opettajan Moodlessa jakama materiaali.
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX II CAS -laskin.

Opiskelijan ajankäyttö ja kuormitus

Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-opetuksesta, jossa opettajaja mukana
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, nettitehtävät, opetusvideot)
-kokeesta
Opettajan pitämiä oppitunteja on n. 28 h

Sisällön jaksotus

-regressio
-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät

Toteutuksen valinnaiset suoritustavat

Ei ole

Harjoittelu- ja työelämäyhteistyö

Ei ole

Kansainvälisyys

Ei ole

Lisätietoja opiskelijoille

Opintojaksoon on Moodle-toteutus.

Arviointikriteerit - hylätty (0) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Opiskelija osallistuu säännöllisesti opetukseen ja suorittaa opintojakson tuntitestit ja loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.

Arviointikriteerit - tyydyttävä (1-2) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti, numeerisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä on vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit - hyvä (3-4) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit - kiitettävä (5) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut sekä käyttää oikeita matemaattisia merkintöjä. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Ilmoittautumisaika

02.12.2021 - 11.01.2022

Ajoitus

10.01.2022 - 26.02.2022

Laajuus

3 op

Toteutustapa

Lähiopetus

Yksikkö

TAMK Matematiikka ja fysiikka

Toimipiste

TAMK Pääkampus

Opetuskielet
  • Suomi
Koulutus
  • Autotekniikan tutkinto-ohjelma
Opettaja
  • Sara Nortunen
Vastuuhenkilö

Sara Nortunen

Ryhmät
  • 21AUTOB
    Autotekniikka 2021

Tavoitteet (OJ)

Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa

Sisältö (OJ)

Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.

Esitietovaatimukset (OJ)

Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.

Arviointikriteerit, tyydyttävä (1-2) (OJ)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit, hyvä (3-4) (OJ)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit, kiitettävä (5) (OJ)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Tenttien ja uusintatenttien ajankohdat

Opintojakson koe pidetään 22.2.2022 tuntiaikaan (alustava aika, voi tulla muutoksia).
Uusintaan osallistuminen edellyttää arvosanaa nolla.
1. uusinta alustavasti 30.3.2022 klo 16.00-19.00 luokassa x.
2. uusinta/korotus alustavasti 13.4.2022 klo 16.00-19.00 luokassa x.
Hyväksyttyä arvosanaa voi korottaa 2. uusintakokeessa.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Uusintakokeeseen ja korotukseen ilmoittaudutaan TAMKin tenttijärjestelmän kautta.

Arviointimenetelmät ja arvioinnin perusteet

Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan kokeilla ja viikoittain tarkastettavilla harjoitustehtävillä, joiden tekeminen vaikuttaa arvosanaan. Kotitehtäväpisteiden saamiseksi on osallistuttava kotitehtävien tarkistukseen (tarkemmat ohjeet Moodlessa). Opintojaksoon saattaa sisätyä myös ryhmässä tehtäviä osioita. Kokeen arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan, kotitehtävien aktiivista tekemistä (vähintään 30%) sekä kurssikokeeseen osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois.
Harjoitustehtävillä saa lisäpisteitä oheisen taulukon mukaan:
yli 30% : 1
yli 50%: 2
yli 70% : 3
yli 90% : 4
Harjoitustehtäväpisteet eivät vaikuta kurssin läpipääsyyn vaan niillä voi korottaa arvosanaa. Lopullinen arvosana määräytyy koepisteiden (viikkokokeet ja loppukoe) ja harjoitustehtäväpisteiden yhteismäärästä sekä osallistumisaktiivisuudesta. Harjoitustehtäväpisteitä ei huomioida enää uusinta- ja korotustenttien yhteydessä.
Arviointikriteeri -hylätty(0):
Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.

Arviointiasteikko

0-5

Opiskelumuodot ja opetusmenetelmät

lähiopetus
etäopetus
ryhmätyö
harjoitukset
viikkokokeet
loppukoe
uusintatentti

Oppimateriaalit

Opettajan jakama materiaali
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS-laskin.

Opiskelijan ajankäyttö ja kuormitus

Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-lähi/etäopetuksesta, jossa opettajaja mukana
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, STACK-tehtävät, opetusvideot)
-kokeesta
Opettajan pitämiä oppitunteja on n. 28 h

Sisällön jaksotus

-regressio
-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät

Lisätietoja opiskelijoille

Opetus alkaa ti 11.1. lukujärjestyksen mukaisesti.
Opintojaksoon on Moodle-toteutus. Oppitunnit pidetään kurssin alussa etäopetuksena (linkki Moodle-sivulla), jatkossa mahdollisesti lähiopetuksena.

Arviointikriteerit - hylätty (0) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.

Arviointikriteerit - tyydyttävä (1-2) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti, numeerisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä on vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit - hyvä (3-4) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit - kiitettävä (5) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut sekä käyttää oikeita matemaattisia merkintöjä. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Ilmoittautumisaika

12.11.2021 - 05.01.2022

Ajoitus

05.01.2022 - 27.02.2022

Laajuus

3 op

Toteutustapa

Lähiopetus

Yksikkö

TAMK Matematiikka ja fysiikka

Toimipiste

TAMK Pääkampus

Opetuskielet
  • Suomi
Koulutus
  • Laboratoriotekniikan tutkinto-ohjelma
Opettaja
  • Ulla Miekkala
Vastuuhenkilö

Ulla Miekkala

Ryhmät
  • 21LATEMM
    Laboratoriotekniikka 2021, monimuoto

Tavoitteet (OJ)

Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa

Sisältö (OJ)

Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.

Esitietovaatimukset (OJ)

Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.

Arviointikriteerit, tyydyttävä (1-2) (OJ)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit, hyvä (3-4) (OJ)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit, kiitettävä (5) (OJ)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Tenttien ja uusintatenttien ajankohdat

Opintojakson koe pidetään xx.2022 (alustava aika, voi tulla muutoksia erityisesti koronarajoitusten mukaan).
Uusintaan osallistuminen edellyttää arvosanaa nolla.
1. uusinta xx.2022 klo 17.00-20.00 (sovitaan kurssin aikana)
2. uusinta/ korotus xx.2022 klo 17.00-20.00 (sovitaan kurssin aikana)
Hyväksyttyä arvosanaa voi korottaa 2. uusintakokeessa.

Arviointimenetelmät ja arvioinnin perusteet

Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan kokeella, nettitehtävillä ja viikoittain tarkastettavilla harjoitustehtävillä, joiden tekeminen vaikuttaa arvosanaan. Kotitehtäväpisteiden saamiseksi on osallistuttava kotitehtävien tarkistukseen (tarkemmat ohjeet Moodlessa).Opintojaksoon saattaa sisältyä myös ryhmässä tehtäviä osioita. Kokeen arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan, nettitehtävien ja kotitehtävien tekoa sekä kurssikokeeseen osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois. Varma läpipääsyraja on 1/3 kurssikokeen ja nettitehtävien yhteenlasketusta maksimipistemäärästä.
Harjoitustehtävillä saa lisäpisteitä oheisen taulukon mukaan:
yli 30% : 1
yli 50%: 2
yli 70% : 3
yli 90% : 4
Harjoitustehtäväpisteet eivät vaikuta kurssin läpipääsyyn vaan niillä voi korottaa arvosanaa. Lopullinen arvosana määräytyy koepisteiden, nettitehtävien ja harjoitustehtäväpisteiden yhteismäärästä sekä osallistumisaktiivisuudesta. Harjoitustehtäväpisteitä ei huomioida enää uusinta- ja korotustenttien yhteydessä.
Arviointikriteeri -hylätty(0):
Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.

Arviointiasteikko

0-5

Opiskelumuodot ja opetusmenetelmät

Etäopetus zoomin avulla, itsenäinen opiskelu, tuntiharjoitukset ja kotitehtävät, videomateriaalit, nettitehtävät, tentti

Oppimateriaalit

Opettajan Moodlessa jakama materiaali (sähköinen PLUSSA-materiaali, videot, interaktiiviset tehtävät, pdf-materiaalit)
Kaavasto: Tekniikan kaavasto, Tammertekniikka

Opiskelijan ajankäyttö ja kuormitus

Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-opetuksesta, jossa opettajaja mukana (Zoom-tunnit)
-itsenäisestä työskentelystä (mm. kotitehtävät, nettitehtävät, opetusvideot)
-kokeesta
Opettajan pitämiä kontaktitunteja on 24 h (koe mukaan lukien)

Sisällön jaksotus

-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät

Lisätietoja opiskelijoille

Opetus alkaa 26.11.2021
Opintojaksoon on Moodle-toteutus.

Arviointikriteerit - hylätty (0) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.

Arviointikriteerit - tyydyttävä (1-2) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti, numeerisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia.Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä on vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit - hyvä (3-4) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit - kiitettävä (5) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut sekä käyttää oikeita matemaattisia merkintöjä. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Ilmoittautumisaika

15.11.2021 - 03.01.2022

Ajoitus

03.01.2022 - 06.03.2022

Laajuus

3 op

Toteutustapa

Lähiopetus

Toimipiste

TAMK Pääkampus

Opetuskielet
  • Suomi
Koulutus
  • Tietotekniikan tutkinto-ohjelma
Opettaja
  • Lasse Enäsuo
Vastuuhenkilö

Lasse Enäsuo

Ryhmät
  • 21TIETOA
    Tietotekniikka

Tavoitteet (OJ)

Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa

Sisältö (OJ)

Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.

Esitietovaatimukset (OJ)

Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.

Arviointikriteerit, tyydyttävä (1-2) (OJ)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit, hyvä (3-4) (OJ)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit, kiitettävä (5) (OJ)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Tenttien ja uusintatenttien ajankohdat

Opintojakson koe pidetään alustavasti ti 22.2.2022 tuntiaikaan (alustava aika, voi tulla muutoksia).
Uusintaan osallistuminen edellyttää arvosanaa nolla.
1. uusinta alustavasti 30.3.2022 klo 16.00-19.00 luokassa x.
2. uusinta/korotus alustavasti 13.4.2022 klo 16.00-19.00 luokassa x.
Hyväksyttyä arvosanaa voi korottaa 2. uusintakokeessa.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Uusintakokeeseen ja korotukseen ilmoittaudutaan TAMKin tenttijärjestelmän kautta.

Arviointimenetelmät ja arvioinnin perusteet

Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan kokeilla ja viikoittain tarkastettavilla harjoitustehtävillä, joiden tekeminen vaikuttaa arvosanaan. Kotitehtäväpisteiden saamiseksi on palautettava kotitehtävät ohjeiden mukaisesti Moodleen (tarkemmat ohjeet Moodlessa). Opintojaksoon saattaa sisältyä myös ryhmässä tehtäviä osioita. Kokeen arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan, kotitehtävien aktiivista tekemistä sekä kurssikokeeseen osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois.

Lopullinen arvosana määräytyy koepisteiden (viikkokokeet ja loppukoe) ja harjoitustehtäväpisteiden yhteismäärästä sekä osallistumisaktiivisuudesta. Harjoitustehtäväpisteitä ja viikkokokeita ei huomioida enää uusinta- ja korotustenttien yhteydessä, vaan uusintakoe on erillinen arvioitava kokonaisuus.

Arviointikriteeri -hylätty(0):
Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.

Arviointiasteikko

0-5

Opiskelumuodot ja opetusmenetelmät

lähiopetus
etäopetus
ryhmätyö
harjoitukset
viikkokokeet
loppukoe
uusintatentti

Oppimateriaalit

Opettajan jakama materiaali
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS-laskin.

Opiskelijan ajankäyttö ja kuormitus

Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-lähi/etäopetuksesta, jossa opettajaja mukana
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, STACK-tehtävät, opetusvideot)
-kokeesta
Opettajan pitämiä oppitunteja on n. 28 h

Sisällön jaksotus

-regressio
-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät

Lisätietoja opiskelijoille

Opetus alkaa viikolla 2 lukujärjestyksen mukaisesti.
Opintojaksoon on Moodle-toteutus. Oppitunnit pidetään kurssin alussa etäopetuksena (linkki Moodle-sivulla), jatkossa mahdollisesti lähiopetuksena.

Arviointikriteerit - hylätty (0) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.

Arviointikriteerit - tyydyttävä (1-2) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti, numeerisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä on vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit - hyvä (3-4) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit - kiitettävä (5) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut sekä käyttää oikeita matemaattisia merkintöjä. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Ilmoittautumisaika

15.11.2021 - 09.01.2022

Ajoitus

03.01.2022 - 06.03.2022

Laajuus

3 op

Toteutustapa

Lähiopetus

Toimipiste

TAMK Pääkampus

Opetuskielet
  • Suomi
Koulutus
  • Tietotekniikan tutkinto-ohjelma
Opettaja
  • Lasse Enäsuo
Vastuuhenkilö

Lasse Enäsuo

Ryhmät
  • 21TIETOB
    Tietotekniikka

Tavoitteet (OJ)

Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa

Sisältö (OJ)

Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.

Esitietovaatimukset (OJ)

Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.

Arviointikriteerit, tyydyttävä (1-2) (OJ)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit, hyvä (3-4) (OJ)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit, kiitettävä (5) (OJ)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Tenttien ja uusintatenttien ajankohdat

Opintojakson koe pidetään alustavasti ti 22.2.2022 tuntiaikaan (alustava aika, voi tulla muutoksia).
Uusintaan osallistuminen edellyttää arvosanaa nolla.
1. uusinta alustavasti 30.3.2022 klo 16.00-19.00 luokassa x.
2. uusinta/korotus alustavasti 13.4.2022 klo 16.00-19.00 luokassa x.
Hyväksyttyä arvosanaa voi korottaa 2. uusintakokeessa.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Uusintakokeeseen ja korotukseen ilmoittaudutaan TAMKin tenttijärjestelmän kautta.

Arviointimenetelmät ja arvioinnin perusteet

Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan kokeilla ja viikoittain tarkastettavilla harjoitustehtävillä, joiden tekeminen vaikuttaa arvosanaan. Kotitehtäväpisteiden saamiseksi on palautettava kotitehtävät ohjeiden mukaisesti Moodleen (tarkemmat ohjeet Moodlessa). Opintojaksoon saattaa sisältyä myös ryhmässä tehtäviä osioita. Kokeen arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan, kotitehtävien aktiivista tekemistä sekä kurssikokeeseen osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois.

Lopullinen arvosana määräytyy koepisteiden (viikkokokeet ja loppukoe) ja harjoitustehtäväpisteiden yhteismäärästä sekä osallistumisaktiivisuudesta. Harjoitustehtäväpisteitä ja viikkokokeita ei huomioida enää uusinta- ja korotustenttien yhteydessä, vaan uusintakoe on erillinen arvioitava kokonaisuus.

Arviointikriteeri -hylätty(0):
Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.

Arviointiasteikko

0-5

Opiskelumuodot ja opetusmenetelmät

lähiopetus
etäopetus
ryhmätyö
harjoitukset
viikkokokeet
loppukoe
uusintatentti

Oppimateriaalit

Opettajan jakama materiaali
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS-laskin.

Opiskelijan ajankäyttö ja kuormitus

Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-lähi/etäopetuksesta, jossa opettajaja mukana
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, STACK-tehtävät, opetusvideot)
-kokeesta
Opettajan pitämiä oppitunteja on n. 28 h

Sisällön jaksotus

-regressio
-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät

Lisätietoja opiskelijoille

Opetus alkaa viikolla 2 lukujärjestyksen mukaisesti.
Opintojaksoon on Moodle-toteutus. Oppitunnit pidetään kurssin alussa etäopetuksena (linkki Moodle-sivulla), jatkossa mahdollisesti lähiopetuksena.

Arviointikriteerit - hylätty (0) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.

Arviointikriteerit - tyydyttävä (1-2) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti, numeerisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä on vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit - hyvä (3-4) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit - kiitettävä (5) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut sekä käyttää oikeita matemaattisia merkintöjä. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Ilmoittautumisaika

02.12.2021 - 10.01.2022

Ajoitus

01.01.2022 - 06.03.2022

Laajuus

3 op

Toteutustapa

Lähiopetus

Toimipiste

TAMK Pääkampus

Opetuskielet
  • Suomi
Paikat

0 - 48

Koulutus
  • Sähkö- ja automaatiotekniikan tutkinto-ohjelma
Opettaja
  • Ulla Miekkala
Vastuuhenkilö

Ulla Miekkala

Ryhmät
  • 21I231B
    Sähkö- ja automaatiotekniikka

Tavoitteet (OJ)

Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa

Sisältö (OJ)

Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.

Esitietovaatimukset (OJ)

Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.

Arviointikriteerit, tyydyttävä (1-2) (OJ)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit, hyvä (3-4) (OJ)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit, kiitettävä (5) (OJ)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Tenttien ja uusintatenttien ajankohdat

Opintojakson koe pidetään 2x.2.2022 tuntiaikaan (alustava aika, voi tulla muutoksia).
Uusintaan osallistuminen edlyttää arvosanaa nolla.
1. uusinta 30.3.2022 klo 17.00-20.00 (paikka ilmoitetaan ennen tenttiä)
2. uusinta/ korotus 13.4.2022 klo 17.00-20.00 (paikka ilmoitetaan ennen tenttiä)
Hyväksyttyä arvosanaa voi korottaa 2. uusintakokeessa.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Uusintakokeeseen ja korotukseen ilmoittaudutaan TAMKin tenttijärjestelmän kautta.

Arviointimenetelmät ja arvioinnin perusteet

Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan kokeilla, nettitehtävillä ja viikoittain tarkastettavilla harjoitustehtävillä, joiden tekeminen vaikuttaa arvosanaan. Kotitehtäväpisteiden saamiseksi on osallistuttava kotitehtävien tarkistukseen (tarkemmat ohjeet Moodlessa).Opintojaksoon saattaa sisältyä myös ryhmässä tehtäviä osioita. Kokeiden arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan, nettitehtävien ja kotitehtävien tekoa sekä kurssikokeisiin osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois. Varma läpipääsyraja on 1/3 kurssikokeen ja nettitehtävien yhteenlasketusta maksimipistemäärästä.
Harjoitustehtävillä saa lisäpisteitä oheisen taulukon mukaan:
yli 30% : 1
yli 50%: 2
yli 70% : 3
yli 90% : 4
Harjoitustehtäväpisteet eivät vaikuta kurssin läpipääsyyn vaan niillä voi korottaa arvosanaa. Lopullinen arvosana määräytyy koepisteiden, nettitehtävien ja harjoitustehtäväpisteiden yhteismäärästä sekä osallistumisaktiivisuudesta. Harjoitustehtäväpisteitä ei huomioida enää uusinta- ja korotustenttien yhteydessä.
Arviointikriteeri -hylätty(0):
Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson kokeisiin, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.

Arviointiasteikko

0-5

Opiskelumuodot ja opetusmenetelmät

Lähiopetus (aloitus etäopetuksena zoomin avulla), itsenäinen opiskelu, tuntiharjoitukset ja kotitehtävät, videomateriaalit, nettitehtävät, tentti

Oppimateriaalit

Opettajan Moodlessa jakama materiaali (sähköinen PLUSSA-materiaali, videot, interaktiiviset tehtävät, pdf-materiaalit, STACK-tehtävät)
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS/ TI-nspire CX II CAS -laskin.

Opiskelijan ajankäyttö ja kuormitus

Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-opetuksesta, jossa opettajaja mukana (Zoom-tunnit)
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, nettitehtävät, opetusvideot)
-kokeesta
Opettajan pitämiä lähitunteja on n. 30 h

Sisällön jaksotus

-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät

Lisätietoja opiskelijoille

Opetus alkaa viikolla 2 lukujärjestyksen mukaisesti.
Opintojaksoon on Moodle-toteutus.

Arviointikriteerit - hylätty (0) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson kokeisiin, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.

Arviointikriteerit - tyydyttävä (1-2) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti, numeerisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia.Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä on vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit - hyvä (3-4) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit - kiitettävä (5) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut sekä käyttää oikeita matemaattisia merkintöjä. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Ilmoittautumisaika

02.12.2021 - 15.02.2022

Ajoitus

01.01.2022 - 06.03.2022

Laajuus

3 op

Toteutustapa

Lähiopetus

Yksikkö

Rakennustekniikka

Toimipiste

TAMK Pääkampus

Opetuskielet
  • Suomi
Koulutus
  • Rakennustekniikan tutkinto-ohjelma
Opettaja
  • Kirsi-Maria Rinneheimo
Vastuuhenkilö

Kirsi-Maria Rinneheimo

Ryhmät
  • 21RTB
    Rakennustekniikka

Tavoitteet (OJ)

Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa

Sisältö (OJ)

Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.

Esitietovaatimukset (OJ)

Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.

Arviointikriteerit, tyydyttävä (1-2) (OJ)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit, hyvä (3-4) (OJ)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit, kiitettävä (5) (OJ)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Tenttien ja uusintatenttien ajankohdat

Opintojakso suoritetaan kahdella välikokeella, joiden ajat ilmoitetaan kurssin aikana.
Uusintakokeet:
1. uusintakoe 30.3.2022 klo 17-20 ( paikka tarkentuu myöhemmin)
2. uusintakoe/ korotus 13.4.2022 klo 17-20 (paikka tarkentuu myöhemmin)
Uusinnat ja korotukset ovat vain ja ainoastaan tässä ilmoitettuna aikana, ei siis myöhemmin esim. seuraavana vuonna.
Uusintakokeeseen ja korotukseen ilmoittaudutaan opettajan ilmoittamalla tavalla.
Uusintaan osallistuminen edellyttää arvosanaa 0.

Yleiseti kokeesta:
Sairastapauksissa vaaditaan lääkärintodistus.
Poissaolo kokeesta vastaa hylättyä suoritusta.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.

Arviointimenetelmät ja arvioinnin perusteet

Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan välikokeilla, nettitehtävillä ja viikoittain tarkastettavilla harjoitustehtävillä,

Arviointiin vaikuttavat nettitehtävät 15 %, kotitehtävät 10 % ja välikokeet 75 % . Kokeiden arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan, nettitehtävien ja kotitehtävien tekoa sekä välikokeisiin osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois. Arvosanan 1 saa pistemäärällä, joka on 30 % kurssin eri arviointimuotojen yhteenlasketusta maksimipistemäärästä.

Harjoitustehtävillä saa lisäpisteitä oheisen taulukon mukaan:
yli 30% : 1
yli 50% : 2
yli 70% : 3
yli 90% : 4
Kotitehtäväpisteiden saamiseksi on osallistuttava kotitehtävien tarkistukseen (tarkemmat ohjeet Moodlessa).

Uusinta- ja korotus:
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä-, nettitehtävä- eikä välikoepisteet.

Arviointikriteeri - hylätty (0)
Opiskelija osallistuu säännöllisesti opetukseen ja sen työmuotoihin, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Mikäli edellä mainitut kriteerit eivät täyty, niin opiskelija poistetaan toteutukselta. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.

Arviointiasteikko

0-5

Opiskelumuodot ja opetusmenetelmät

Lähiopetus/ etäopetus zoomin kautta, itsenäinen opiskelu, tuntiharjoitukset ja kotitehtävät, videomateriaalit, nettitehtävät (STACK-tehtävät), välikokeet, tentti

Oppimateriaalit

Opettajan Moodlessa jakama materiaali (sähköinen PLUSSA-materiaali, videot, interaktiiviset tehtävät, pdf-materiaalit)
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS/ TI-nspire CX II CAS -laskin.

Opiskelijan ajankäyttö ja kuormitus

Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-opetuksesta, jossa opettajaja mukana
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, nettitehtävät, opetusvideot)
-kokeista
Opettajan pitämiä lähitunteja on n. 30 h

Sisällön jaksotus

-regressio
-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät

Lisätietoja opiskelijoille

Opetus alkaa viikolla 2 lukujärjestyksen mukaisesti.
Opintojaksoon on Moodle-toteutus. Opettaja lähettää Moodle-avaimen kurssille ilmoittautuneille ennen kurssia alkua sähköpostilla .

Arviointikriteerit - hylätty (0) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.

Arviointikriteerit - tyydyttävä (1-2) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti, numeerisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia.Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä on vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit - hyvä (3-4) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit - kiitettävä (5) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut sekä käyttää oikeita matemaattisia merkintöjä. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Ilmoittautumisaika

01.12.2021 - 06.01.2022

Ajoitus

01.01.2022 - 27.02.2022

Laajuus

3 op

Toteutustapa

Lähiopetus

Yksikkö

Talotekniikka

Toimipiste

TAMK Pääkampus

Opetuskielet
  • Suomi
Paikat

1 - 45

Koulutus
  • Talotekniikan tutkinto-ohjelma, Sähköinen talotekniikka
Opettaja
  • Pia Ruokonen-Kaukolinna
Vastuuhenkilö

Pia Ruokonen-Kaukolinna

Ryhmät
  • 21I254
    Sähköinen talotekniikka

Tavoitteet (OJ)

Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa

Sisältö (OJ)

Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.

Esitietovaatimukset (OJ)

Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.

Arviointikriteerit, tyydyttävä (1-2) (OJ)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit, hyvä (3-4) (OJ)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit, kiitettävä (5) (OJ)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Tenttien ja uusintatenttien ajankohdat

Opintojakso suoritetaan kahdella välikokeella, joiden ajat ilmoitetaan kurssin aikana. Välikokeita/viikkokokeita ei voi uusia eikä korottaa. Koko kurssin uusintakoe järjestetään seuraavasti:
Uusintakokeet:
1. uusintakoe 30.3.2022 klo 17-20 ( paikka tarkentuu myöhemmin)
2. uusintakoe/ korotus 13.4.2022 klo 17-20 (paikka tarkentuu myöhemmin)
Uusinnat ja korotukset ovat vain ja ainoastaan tässä ilmoitettuna aikana, ei siis myöhemmin esim. seuraavana vuonna.
Uusintakokeeseen ja korotukseen ilmoittaudutaan opettajan ilmoittamalla tavalla.
Uusintaan osallistuminen edellyttää arvosanaa 0.

Yleiseti kokeesta:
Sairastapauksissa vaaditaan lääkärintodistus.
Poissaolo kokeesta vastaa hylättyä suoritusta.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.

Arviointimenetelmät ja arvioinnin perusteet

Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan välikokeilla, nettitehtävillä ja viikoittain tarkastettavilla harjoitustehtävillä,

Arvosteluun vaikuttavat nettitehtävät 15 %, kotitehtävät 10 % ja välikokeet 75 % . Kokeiden arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan, nettitehtävien ja kotitehtävien tekoa sekä välikokeisiin osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois. Arvosanan 1 saa pistemäärällä, joka on 30 % kurssin eri arviointimuotojen yhteenlasketusta maksimipistemäärästä.

Harjoitustehtävillä saa lisäpisteitä oheisen taulukon mukaan:
yli 30% : 1
yli 50% : 2
yli 70% : 3
yli 90% : 4
Kotitehtäväpisteiden saamiseksi on osallistuttava kotitehtävien tarkistukseen (tarkemmat ohjeet Moodlessa).

Uusinta- ja korotus:
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä-, nettitehtävä- eikä välikoepisteet.

Arviointikriteeri - hylätty (0)
Opiskelija osallistuu säännöllisesti opetukseen ja sen työmuotoihin, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Mikäli edellä mainitut kriteerit eivät täyty, niin opiskelija poistetaan toteutukselta. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.

Arviointiasteikko

0-5

Opiskelumuodot ja opetusmenetelmät

Lähiopetus/ etäopetus zoomin kautta, itsenäinen opiskelu, tuntiharjoitukset ja kotitehtävät, videomateriaalit, nettitehtävät (STACK-tehtävät), viikkokokeet, tentti

Oppimateriaalit

Opettajan Moodlessa jakama materiaali (pdf-materiaalit, videot, interaktiiviset tehtävät)
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS/ TI-nspire CX II CAS -laskin.

Opiskelijan ajankäyttö ja kuormitus

Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-opetuksesta, jossa opettajaja mukana
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, nettitehtävät, opetusvideot)
-kokeista
Opettajan pitämiä lähitunteja on n. 30 h

Sisällön jaksotus

-regressio
-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät

Lisätietoja opiskelijoille

Opetus alkaa viikolla 2 lukujärjestyksen mukaisesti.
Opintojaksoon on Moodle-toteutus. Opettaja lähettää Moodle-avaimen kurssille ilmoittautuneille ennen kurssia alkua sähköpostilla .

Arviointikriteerit - hylätty (0) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.

Arviointikriteerit - tyydyttävä (1-2) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti, numeerisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia.Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä on vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit - hyvä (3-4) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit - kiitettävä (5) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut sekä käyttää oikeita matemaattisia merkintöjä. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Ilmoittautumisaika

02.12.2021 - 06.01.2022

Ajoitus

01.01.2022 - 06.03.2022

Laajuus

3 op

Toteutustapa

Lähiopetus

Yksikkö

TAMK Matematiikka ja fysiikka

Toimipiste

TAMK Pääkampus

Opetuskielet
  • Suomi
Koulutus
  • Autotekniikan tutkinto-ohjelma
Opettaja
  • Pia Ruokonen-Kaukolinna
Vastuuhenkilö

Pia Ruokonen-Kaukolinna

Ryhmät
  • 21AUTOA
    Autotekniikka 2021

Tavoitteet (OJ)

Opiskelija osaa
- käyttää raja-arvoon ja derivaattaan liittyviä käsitteitä ja merkintöjä
- tulkita derivaatan muutosnopeutena
- määrittää derivaatan graafisesti, numeerisesti ja symbolisesti
- ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
- käyttää differentiaalia virhearvioissa

Sisältö (OJ)

Raja-arvon, derivaatan ja osittaisderivaatan käsitteet, derivaatta muutosnopeutena ja funktion ominaisuuksien kuvaajana, derivaatan laskeminen graafisesti, numeerisesti ja symbolisesti. Derivaatan käyttö sovellustehtävissä, erityisesti ääriarvotehtävissä ja funktion linearisoinnissa. Differentiaali ja sen käyttö virhearvioissa.

Esitietovaatimukset (OJ)

Insinöörimatematiikan valmentavat opinnot ja Funktiot ja matriisit
tai vastaavat tiedot.

Arviointikriteerit, tyydyttävä (1-2) (OJ)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit, hyvä (3-4) (OJ)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit, kiitettävä (5) (OJ)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Tenttien ja uusintatenttien ajankohdat

Opintojakso suoritetaan kahdella välikokeella, joiden ajat ilmoitetaan kurssin aikana. Välikokeita/viikkokokeita ei voi uusia eikä korottaa. Koko kurssin uusintakoe järjestetään seuraavasti:
Uusintakokeet:
1. uusintakoe 30.3.2022 klo 17-20 ( paikka tarkentuu myöhemmin)
2. uusintakoe/ korotus 13.4.2022 klo 17-20 (paikka tarkentuu myöhemmin)
Uusinnat ja korotukset ovat vain ja ainoastaan tässä ilmoitettuna aikana, ei siis myöhemmin esim. seuraavana vuonna.
Uusintakokeeseen ja korotukseen ilmoittaudutaan opettajan ilmoittamalla tavalla.
Uusintaan osallistuminen edellyttää arvosanaa 0.

Yleiseti kokeesta:
Sairastapauksissa vaaditaan lääkärintodistus.
Poissaolo kokeesta vastaa hylättyä suoritusta.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.

Arviointimenetelmät ja arvioinnin perusteet

Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan välikokeilla, nettitehtävillä ja viikoittain tarkastettavilla harjoitustehtävillä,

Arvosteluun vaikuttavat nettitehtävät 15 %, kotitehtävät 10 % ja välikokeet 75 % . Kokeiden arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan, nettitehtävien ja kotitehtävien tekoa sekä välikokeisiin osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois. Arvosanan 1 saa pistemäärällä, joka on 30 % kurssin eri arviointimuotojen yhteenlasketusta maksimipistemäärästä.

Harjoitustehtävillä saa lisäpisteitä oheisen taulukon mukaan:
yli 30% : 1
yli 50% : 2
yli 70% : 3
yli 90% : 4
Kotitehtäväpisteiden saamiseksi on osallistuttava kotitehtävien tarkistukseen (tarkemmat ohjeet Moodlessa).

Uusinta- ja korotus:
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä-, nettitehtävä- eikä välikoepisteet.

Arviointikriteeri - hylätty (0)
Opiskelija osallistuu säännöllisesti opetukseen ja sen työmuotoihin, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Mikäli edellä mainitut kriteerit eivät täyty, niin opiskelija poistetaan toteutukselta. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.

Arviointiasteikko

0-5

Opiskelumuodot ja opetusmenetelmät

Lähiopetus/ etäopetus zoomin kautta, itsenäinen opiskelu, tuntiharjoitukset ja kotitehtävät, videomateriaalit, nettitehtävät (STACK-tehtävät), viikkokokeet, tentti

Oppimateriaalit

Opettajan Moodlessa jakama materiaali (pdf-materiaalit, videot, interaktiiviset tehtävät)
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS/ TI-nspire CX II CAS -laskin.

Opiskelijan ajankäyttö ja kuormitus

Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-opetuksesta, jossa opettajaja mukana
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, nettitehtävät, opetusvideot)
-kokeista
Opettajan pitämiä lähitunteja on n. 30 h

Sisällön jaksotus

-regressio
-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät

Lisätietoja opiskelijoille

Opetus alkaa viikolla 2 lukujärjestyksen mukaisesti.
Opintojaksoon on Moodle-toteutus. Opettaja lähettää Moodle-avaimen kurssille ilmoittautuneille ennen kurssia alkua sähköpostilla .

Arviointikriteerit - hylätty (0) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.

Arviointikriteerit - tyydyttävä (1-2) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti, numeerisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia.Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä on vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit - hyvä (3-4) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit - kiitettävä (5) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut sekä käyttää oikeita matemaattisia merkintöjä. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.