Data Analysis and Visualization (10op)
Toteutuksen tunnus: 5G00GC10-3001
Toteutuksen perustiedot
- Ilmoittautumisaika
- 08.06.2025 - 30.08.2025
- Ilmoittautuminen toteutukselle on käynnissä.
- Ajoitus
- 25.08.2025 - 21.12.2025
- Toteutus ei ole vielä alkanut.
- Laajuus
- 10 op
- Toteutustapa
- Lähiopetus
- Yksikkö
- Software Engineering
- Toimipiste
- TAMK Pääkampus
- Opetuskielet
- englanti
- Koulutus
- Bachelor's Degree Programme in Software Engineering
- Opettajat
- Ossi Nykänen
- Vastuuhenkilö
- Esa Kunnari
- Ryhmät
-
23I260EADegree Programme in Software Engineering
- Luokittelu
- CONTACT
- Opintojakso
- 5G00GC10
Osaamistavoitteet (Opintojakso)
The student understands basic concepts of Statistics and Classical Data Analysis. The student knows about methods for collecting and preprocessing data for analysis and visualization. The student can make appropriate data analyses and visualizations for the problem. The student can evaluate both the quality and the applicability of the results.
Sisältö (Opintojakso)
Course content is:
- Data collection and Data Preprocessing methods
- Visual analytics process
- Basic methods of Statistics and Classical Data Analysis
- Data analysis with Analytics Tools and Python
- Visualization models
- Critical evaluation of results
Basics of data analysis and visualization (3 cr): Concepts: population, sample, sampling. Statistical indicators: Mean, standard deviation, median, mode, confidence intervals. P-value and tests (single variable, correlation, khii ^ 2, t-test of two independent / dependent samples. Data visualization. Linear regression, fitting the line to a set of points, the correlation coefficient and its square. Excel / Matlab etc. as a tool.
Arviointikriteerit, tyydyttävä (1-2) (Opintojakso)
The student knows at least one data collection and data preprocessing method. The student can implement a visual analytics process. The student knows some simple methods of data analysis and visualization. The student can implement a data analysis cases with an analytic tool and with Python. The student can use a visualization model. The student can conduct an evaluation of the results.
Arviointikriteerit, hyvä (3-4) (Opintojakso)
The student knows some different data collection and data preprocessing methods. The student can implement some appropriate visual analytics processes. The student knows some basic methods of data analysis and visualization. The student can implement a data analysis cases with appropriate analytics tools and with Python. The student can use some visualization models. The student can conduct a critical evaluation of the results.
Arviointikriteerit, kiitettävä (5) (Opintojakso)
The student knows and can exploit comprehensively different data collection and data preprocessing methods. The student can implement different visual analytics processes. The student knows the common basic methods of data analysis and visualization. The student can implement different data analysis cases with appropriate analytics tools and with Python. The student can exploit visualization models. The student can conduct a comprehensive critical evaluation of the results.
Tenttien ja uusintatenttien ajankohdat
No exam.
Arviointimenetelmät ja arvioinnin perusteet
Assignment and presentation scores and the related activity.
Arviointiasteikko
0-5
Opiskelumuodot ja opetusmenetelmät
Contact teaching
Assignments (the primary learning method)
Group work and presentation
Oppimateriaalit
Moodle course with links to additional material.
Opiskelijan ajankäyttö ja kuormitus
See the period timetable. See the Moodle course for instructions when and how to attend the contact teaching hours.