Insinöörimatematiikka (6 op)
Toteutuksen tunnus: 5N00GL29-3001
Toteutuksen perustiedot
Ilmoittautumisaika
01.12.2024 - 03.01.2025
Ajoitus
01.01.2025 - 30.04.2025
Laajuus
6 op
Toteutustapa
Lähiopetus
Toimipiste
TAMK Pääkampus
Opetuskielet
- Suomi
Koulutus
- Rakennustekniikan tutkinto-ohjelma
Opettaja
- Pia Ruokonen-Kaukolinna
Vastuuhenkilö
Pia Ruokonen-Kaukolinna
Ryhmät
-
24RTARakennustekniikka
Tavoitteet (OJ)
Tällä opintojaksolla opit niitä laskemisen ja matemaattisen mallintamisen taitoja, joita tarvitset insinöörin ammatissa. Osa-alueena on differentiaali - ja integraalilaskenta
Opintojakson päätyttyä sinä
• tunnistat eksponentti- ja logaritmifunktiot
• osaat ratkaista eksponentti- ja logaritmiyhtälöitä ja soveltaa niitä tekniikan ongelmissa
• osaat matriisien peruslaskutoimitukset ja tunnet joitakin sovelluksia
• osaat käyttää raja-arvoon, derivaattaan ja integraaliin liittyviä käsitteitä ja merkintöjä
• osaat tulkita derivaatan muutosnopeutena
• osaat määrittää derivaatan ja integraalin graafisesti, numeerisesti ja symbolisesti
• osaat ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan tai integraalin käyttöä
• kykenet esittämään ja perustelemaan loogisesti valitut ratkaisut
• osaat arvioida tekemiensä ratkaisujen järkevyyttä ja oikeellisuutta
Sisältö (OJ)
• eksponentti- ja logaritmifunktio
• eksponenttiyhtälö, logaritmiyhtälö
• matriisin peruskäsitteet ja laskutoimitukset (summa, luvulla kertominen, tulo, determinantti, käänteismatriisi)
• lineaarisen yhtälöryhmän ratkaiseminen matriiseilla
• joitakin matriisin sovelluksia
• raja-arvon käsite lyhyesti
• derivaatta kuvaajasta
• derivaatta numeerisesti
• derivaatan laskeminen derivointisääntöjen avulla
• korkeammat derivaatat (käydään merkinnän tasolla)
• joitakin derivaatan sovelluksia (esim. differentiaali ja kokonaisdifferentiaali, virheen arviointi ja ääriarvot)
• määrätty integraali graafisesti
• määrätty integraali numeerisesti
• integraalifunktion laskeminen integrointisääntöjen avulla
• analyysin peruslause, määrätty integraali symbolisesti
• joitakin integraalin sovelluksia (esim. matka, työ, pinta-ala, painopiste, keskiarvo, neliöllinen keskiarvo)
Arviointikriteerit, tyydyttävä (1-2) (OJ)
Opiskelija
• tunnistaa eksponentti- ja logaritmifunktiot
• osaa ratkaista yksinkertaisia eksponentti- ja logaritmiyhtälöitä
• osaa matriisien peruslaskutoimituksia
• osaa käyttää joitakin derivaattaan ja integraaliin liittyviä käsitteitä ja merkintöjä
• tietää periaatteen derivaatasta muutosnopeutena
• osaa määrittää tunnilla käytyjen yksinkertaisten esimerkkien kaltaisesti derivaatan ja integraalin graafisesti, numeerisesti ja symbolisesti
• valittujen ratkaisujen esitykset ja perustelut saattavat olla puutteellisia
• tehtyjen ratkaisujen järkevyyden ja oikeellisuuden arvioinnissa saattaa olla puutteita
Arviointikriteerit, hyvä (3-4) (OJ)
Opiskelija
• tunnistaa eksponentti- ja logaritmifunktiot
• osaa ratkaista eksponentti- ja logaritmiyhtälöitä ja soveltaa niitä tekniikan ongelmissa
• osaa matriisien peruslaskutoimitukset ja tuntee joitakin sovelluksia
• osaa käyttää raja-arvoon, derivaattaan ja integraaliin liittyviä käsitteitä ja merkintöjä
• osaa tulkita derivaatan muutosnopeutena
• osaa määrittää derivaatan ja integraalin graafisesti, numeerisesti ja symbolisesti
• osaa ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan tai integraalin käyttöä
• kykenee esittämään ja perustelemaan loogisesti valitut ratkaisut
• osaa arvioida tekemiensä ratkaisujen järkevyyttä ja oikeellisuutta
Arviointikriteerit, kiitettävä (5) (OJ)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja hän osaa soveltaa niitä vaativampiin ongelmiin. Opiskelijalla on taito esittää ja perustella loogisesti valitut ratkaisut. Ratkaisut esitetään selkeästi ja matemaattisia käsitteitä käytetään täsmällisesti. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Tenttien ja uusintatenttien ajankohdat
Opintojakso suoritetaan välikokeilla (3 kpl), joiden ajat varmistetaan kurssin aikana ja ne läytyvät myös Moodlesta.
Kurssin yhden välikokeen voi uusia tai korottaa.
Koko kurssin uusintakoe järjestetään seuraavasti:
1. uusintakoe xx.2025 13.00 - 16.00, Ilmoittautumisaika xx.2025 – xx.2025
2. uusintakoe/ korotus xx.2025 13.00 - 16.00, Ilmoittautumisaika xx.2025 – xx.2025
Uusinnat ja korotukset ovat vain ja ainoastaan tässä ilmoitettuna aikana, ei siis myöhemmin esimerkiksi seuraavana vuonna.
Uusintakokeeseen ja korotukseen ilmoittaudutaan Pakin kautta.
Uusintaan osallistuminen edellyttää arvosanaa 0.
Yleiseti kokeesta:
Sairastapauksissa vaaditaan lääkärintodistus.
Poissaolo kokeesta vastaa hylättyä suoritusta.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Arviointimenetelmät ja arvioinnin perusteet
Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan tekemällä viikottaisia harjoitustehtäviä sekä kaksi koetta. Viikoittaisilla harjoitustehtävillä voi kerätä xx pistettä ja kokeilla xx pistettä. Hyväksyttyyn suoritukseen riittää xx pistettä, joista x pistettä on tultava kokeella. Kokeiden arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys.
Jo arvosanaan 0 vaaditaan, että opiskelija on tehnyt suoritteita koko kurssin ajan.
Kotitehtäviä ei voi merkitä eikä palauttaa enää ennalta määrätyn ajan jälkeen.
Uusinta- ja korotus:
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtäväpisteet eikä aiemmat koepisteet. Siinä on kurssiarvosana määräytyy pelkästään kokeen perustella ja läpipääsyyn vaaditaan 1/3 kokeen maksimipistemäärästä.
Kurssilla voi uusia tai korottaa myös yhden yksittäisen välikokeen.
Arviointikriteeri - hylätty (0)
Opiskelija osallistuu säännöllisesti opetukseen ja sen työmuotoihin, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Mikäli edellä mainitut kriteerit eivät täyty, niin opiskelija poistetaan toteutukselta. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeisiin.
Arviointiasteikko
0-5
Opiskelumuodot ja opetusmenetelmät
Lähiopetus, itsenäinen opiskelu, tuntiharjoitukset ja kotitehtävät, videomateriaalit, nettitehtävät (STACK-tehtävät), välikokeet
Oppimateriaalit
Opettajan Moodlessa jakama materiaali (pdf-materiaalit, videot, interaktiiviset STACK- tehtävät)
Kaavasto: Tekniikan kaavasto, Tammertekniikka tai MAOL
Opintojaksolla hyödynnetään symbolista laskinta, laskinsuositus: symbolinen TI-nspire CX CAS/ TI-nspire CX II CAS -laskin.
Opiskelijan ajankäyttö ja kuormitus
Opiskelijan keskimääräinen työmäärä on 162 h, joka koostuu:
- lähiopetuksesta
- itsenäisestä työskentelystä (mm. aiheen opiskelu oppimateriaalin ja opetusvideoiden avulla
- kotitehtävistä ja testitehtävistä
- välikokeista
Sisällön jaksotus
Sisällön jaksotus on suuntaa antava.
Logaritmit ja matriisit:
-logaritmin käsite, eksponentti- ja logaritmiyhtälöt
-matriisien perusoperaatiot ja matriisien sovelluksia
Differentiaalilaskennan osuus:
-raja-arvon käsite
-derivaatta funktion ominaisuuksien kuvaajana, muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät
Integraalilaskenna osuus:
- määrätty integraali ja sen graafinen tulkinta
- numeerinen integrointi
- integraalifunktio ja integrointikaavoja
- analyysin peruslause (määrätyn integraalin ja integraalifunktion yhteys)
- pienten differentiaalien menetelmä ja sovellustehtäviä
Toteutuksen valinnaiset suoritustavat
Ei ole.
Harjoittelu- ja työelämäyhteistyö
Ei ole.
Kansainvälisyys
Ei ole.
Lisätietoja opiskelijoille
Kaikki kurssiin liittyvä tiedotus tapahtuu Moodlesta tuni-sähköpostiin, joten kurssille osallistuvien oletetaan seuraavan säännöllisesti tuni-sähköpostiaan. Kurssin Moodle ei näy automaattisesti, vaan opettaja lähettää sinne linkin ja Moodle-avaimen ennen kurssin alkua.