Artificial Intelligence in Social and Healthcare (5 cr)
Code: 7Y00GE98-3001
General information
- Enrolment period
- 02.10.2024 - 31.01.2025
- Registration for the implementation has ended.
- Timing
- 01.01.2025 - 18.05.2025
- Implementation has ended.
- Credits
- 5 cr
- Mode of delivery
- Contact learning
- Unit
- MD in Health Technology
- Campus
- TAMK Main Campus
- Teaching languages
- Finnish
- Degree programmes
- Master's Degree Programme in Health Technology
- Teachers
- Heidi Peltolehto
- Teemu Heinimäki
- Person in charge
- Heidi Peltolehto
- Tags
- ONLINE
- Course
- 7Y00GE98
Objectives (course unit)
In the course, students learn about artificial intelligence and machine learning, especially in the context of the health care sector. Working with advanced algorithms and programming principles, students evaluate and develop artificial intelligence applications, and apply their theoretical understanding and skills to meet the challenges and innovations of modern health care in the field of artificial intelligence and machine learning.
After the course, the student
- know the key principles, terms and concepts of artificial intelligence and machine learning
- know the process of machine learning and AI creation
- know the key applications of AI in the health sector
Content (course unit)
The concept of an algorithm, the basic principles of programming
Principles, terms and concepts of artificial intelligence and machine learning
AI and machine learning model creation and testing and quality assessment
Key applications of artificial intelligence and machine learning in the health sector
Assessment criteria, satisfactory (1-2) (course unit)
The student
- knows the key principles, terms and concepts of artificial intelligence
- knows the processes of creating artificial intelligence
- knows the key applications of artificial intelligence and their effects in the health sector
Assessment criteria, good (3-4) (course unit)
The student
- knows the key principles, terms and concepts of artificial intelligence
- knows the processes of creating artificial intelligence
- knows the key applications of artificial intelligence and their effects in the health sector
- will be able to create a machine learning model based on the data in a selected environment and test and evaluate the quality of the model
- will be able to find and analyse applications of artificial intelligence and evaluate the usefulness of artificial intelligence in healthcare processes
Assessment criteria, excellent (5) (course unit)
The student
- knows the key principles, terms and concepts of artificial intelligence
- knows the processes of creating artificial intelligence
- knows the key applications of artificial intelligence and their effects in the health sector
- will be able to create a machine learning model based on the data in a selected environment and test and evaluate the quality of the model
- will be able to find and analyse applications of artificial intelligence and evaluate the usefulness of artificial intelligence in healthcare processes
- will be able to create an AI model in the healthcare process and critically analyze the quality and applicability of the AI model for the application
- identify the differences between different algorithms in creating a machine learning model and be able to choose an algorithm that is justifiably suitable for the application
Location and time
Etäopetuksena alkaen 17.1.2025 klo 8.30. Ajantasaisia aikataulutietoja ylläpidetään Moodlessa.
Exam schedules
Lähtökohtaisesti ei tenttiä.
Assessment methods and criteria
Arviointi perustuu opintojakson aikana suoritettuihin kurssiaktiviteetteihin (tehtävät, esitykset, projektit yms.) ja niistä kertyviin pisteisiin. Arvosana määräytyy kerättyjen pisteiden prosenttiosuudesta suurimpaan mahdolliseen kokonaispistemäärään nähden alustavasti seuraavasti:
[0 % – 50 %[: 0
[50 % – 60 %[: 1
[60 % – 70 %[: 2
[70 % – 80 %[: 3
[80 % – 90 %[: 4
[90 % – 100 %]: 5
Joidenkin aktiviteettien hyväksytty suoritus voidaan edellyttää, jotta opintojakson voi läpäistä – esim. itse- ja vertaisarviointeja voidaan vaatia.
Assessment scale
0-5
Teaching methods
Luennot/harjoitukset, projektit, esitykset, verkko-opetus, itseopiskelu, ongelmalähtöinen oppiminen, mahdollisesti ryhmätyö, itse-/vertaisarviointi
Learning materials
Ilmoitetaan opintojakson alussa. Lähtökohtaisesti ei pakollista kurssikirjaa.
Student workload
Suunniteltu keskimääräinen opiskelijan ajankäyttö n. 135 h, jakautuu tasaisesti kolmannelle ja neljännelle periodille.
Completion alternatives
(Tarvittaessa yhteys opettajaan erityisjärjestelyjen osalta.)
Practical training and working life cooperation
Ei takeita, mutta tutkitaan mahdollisuutta vierailuluentoon.