Integraalilaskenta (3 op)
Toteutuksen tunnus: 5N00EG75-3077
Toteutuksen perustiedot
Ilmoittautumisaika
02.12.2022 - 06.03.2023
Ajoitus
06.03.2023 - 28.04.2023
Laajuus
3 op
Toteutustapa
Lähiopetus
Yksikkö
TAMK Matematiikka ja fysiikka
Toimipiste
TAMK Pääkampus
Opetuskielet
- Suomi
Koulutus
- Konetekniikan tutkinto-ohjelma
Opettaja
- Ulla Miekkala
Vastuuhenkilö
Ulla Miekkala
Ryhmät
-
22I112BKonetekniikka 2022
Tavoitteet (OJ)
Opiskelija osaa
- käyttää integraaliin liittyviä käsitteitä ja merkintöjä
- määrittää integraalin graafisesti, numeerisesti ja symbolisesti
- soveltaa määrättyä integraalia pinta-alojen laskemisessa
- integraalin soveltamisen pienten differentiaalien menetelmällä
- ratkaista yksinkertaisia differentiaaliyhtälöitä sekä soveltaa niitä matemaattisessa mallintamisessa
Sisältö (OJ)
Käsitteet integraalifunktio ja määrätty integraali. Integraalin määrittäminen graafisesti, numeerisesti ja kaavojen avulla. Integraalin soveltaminen pinta-alojen ja tilavuuksien laskemisessa sekä pienten differentiaalien menetelmällä. Differentiaaliyhtälön käsite, sen alkeistapaukset ja differentiaaliyhtälöiden soveltaminen matemaattisessa mallintamisessa.
Esitietovaatimukset (OJ)
Insinöörimatematiikan valmentavat opinnot, Funktiot ja matriisit sekä Differentiaalilaskenta
tai vastaavat tiedot
Arviointikriteerit, tyydyttävä (1-2) (OJ)
Opiskelija ymmärtää määrätyn integraalin pinta-alatulkinnan ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia integraalin käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Lisäksi opiskelija osaa ratkaista yksinkertaisia differentiaaliyhtälöitä. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit, hyvä (3-4) (OJ)
Edellisten lisäksi opiskelija ymmärtää pienten differentiaalien menetelmän niin, että osaa soveltaa integraalin käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit, kiitettävä (5) (OJ)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut sekä käyttää oikeita matemaattisia merkintöjä. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Aika ja paikka
ti 11-14 B4-27
to 8-11 B4-27
Tenttien ja uusintatenttien ajankohdat
Opintojakson välikokeet pidetään
- 1. välikoe 30.3.2023 tuntiaikaan (alustava aika, voi tulla muutoksia)
- 2. välikoe 2x.4.2023 tuntiaikaan (alustava aika, voi tulla muutoksia)
Uusintaan osallistuminen edellyttää arvosanaa nolla .
1. uusinta ke 17.5.2023 klo 17.00-20.00
2. uusinta/korotus ke 7.6.2023 klo 17.00-20.00
Hyväksyttyä arvosanaa voi korottaa VAIN TÄSSÄ 2. uusintakokeessa (ei siis ensimmäisessä eikä myöhemmin)
Uusintakokeeseen ja korotukseen ilmoittaudutaan TAMKin tenttijärjestelmän kautta (Pakki).
Uusintaan osallistuminen edellyttää arvosanaa 0.
Sairastapauksissa vaaditaan lääkärintodistus.
Poissaolo kokeesta vastaa hylättyä suoritusta.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Arviointimenetelmät ja arvioinnin perusteet
Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan kahdella välikokeella, nettitehtävillä ja viikoittain tarkastettavilla harjoitustehtävillä.
Arvosteluun vaikuttavat nettitehtävät 15 %, välikokeet 75 % ja kotitehtävät 10 %. Kokeiden arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan, nettitehtävien ja kotitehtävien tekoa sekä välikokeisiin osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois. Arvosanan 1 saa pistemäärällä, joka on 30 % kurssin eri arviointimuotojen yhteenlasketusta maksimipistemäärästä.
Uusinta- ja korotus:
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä-, nettitehtävä- eikä viikkokoepisteet.
Välikokeita ei voi uusia.
Arviointiasteikko
0-5
Opiskelumuodot ja opetusmenetelmät
lähi-/etäopetus yhdessä ryhmän 22I231B kanssa
harjoitukset
kotitehtävät
nettitehtävät
välikokeet
Oppimateriaalit
Opettajan jakama materiaali (oppimateriaali, harjoitustehtävät, videomateriaalit, interaktiiviset tehtävät)
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS-laskin.
Opiskelijan ajankäyttö ja kuormitus
Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-etäopetuksesta, jossa opettajaja mukana
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, nettitehtävät, opetusvideot)
-kokeesta
Opettajan pitämiä lähitunteja on n. 30 h
Sisällön jaksotus
- määrätty integraali
- graafinen tulkinta
- numeerinen integrointi
- integraalifunktio ja integrointikaavoja
- analyysin peruslause (määrätyn integraalin ja integraalifunktion yhteys)
- pienten differentiaalien menetelmä ja sovellustehtäviä
- differentiaaliyhtälöiden perusteet
- muuttujien erottaminen ja sovelluksia
- lineaarinen vakiokertoiminen differentiaaliyhtälö ja sovelluksia
Lisätietoja opiskelijoille
Opetus alkaa lukujärjestyksen mukaisesti viikolla 10
Opintojaksoon on Moodle-toteutus.