Tekoäly ja sen menetelmät (5 op)
Toteutuksen tunnus: 5Y00FD87-3003
Toteutuksen perustiedot
Ilmoittautumisaika
02.07.2022 - 04.09.2022
Ajoitus
01.08.2022 - 31.12.2022
Laajuus
5 op
Toteutustapa
Lähiopetus
Yksikkö
Dataosaaminen ja tekoäly YAMK
Toimipiste
TAMK Pääkampus
Opetuskielet
- Suomi
Koulutus
- Dataosaamisen ja tekoälyn ylempi tutkinto-ohjelma
Opettaja
- Ossi Nykänen
Vastuuhenkilö
Ossi Nykänen
Ryhmät
-
22YDTDataosaaminen ja tekoäly 2022, ylempi tutkinto-ohjelma, insinööri
Tavoitteet (OJ)
Opiskelija tietää mitä tarkoittaa tekoäly ja millaisia tyypillisiä ongelmia sillä ratkotaan. Opiskelija tuntee tekoälyyn liittyvät keskeiset käsitteet ja algoritmit. Opiskelija tutustuu joihinkin tyypillisiin tekoälytyökaluihin ja niiden käyttöön. Tekoälyn sovellusalueita käydään lävitse.
Sisältö (OJ)
Tekoälyn olemus ja siihen liittyvät keskeiset käsitteet. Tekoälyllä tyypillisesti ratkaistavat ongelmat. Eri tyyppiset tekoälyalgoritmit. Tekoälyyn liittyvät työkalut. Tekoälysovelluksia.
Arviointikriteerit, tyydyttävä (1-2) (OJ)
Opiskelija tuntee tekoälyn yleisesti. Opiskelija osaa hyödyntää ohjatusti joitakin läpikäytyjä tekoälyyn liittyviä teknologioita. Opiskelija kykenee tunnistamaan eräitä sovellusalueita, johon tekoäly sopii.
Arviointikriteerit, hyvä (3-4) (OJ)
Opiskelija tuntee tekoälyn ja sen keskeiset käsitteet. Opiskelija osaa hyödyntää osaa kurssilla läpikäytyjä tekoälyyn liittyviä teknologioita. Opiskelija kykenee tunnistamaan tekoälyn käyttömahdollisuuksia eri sovellusalueilla.
Arviointikriteerit, kiitettävä (5) (OJ)
Opiskelija tuntee tekoälyn ja sen keskeiset käsitteet monipuolisesti. Opiskelija osaa hyödyntää luovasti keskeisimpiä läpikäytyjä tekoälyyn liittyviä teknologioita. Opiskelija kykenee arvioimaan erinomaisesti tekoälyn hyödyntämismahdollisuudet eri sovellusalueilla.
Aika ja paikka
Ks. periodiaikataulu. Kurssi starttaa hybridimuotoisena siten, että läsnäolo kampuksella on suositeltava osallistumistapa, mutta osallistumiseen tarjotaan mahdollisuuksien mukaan myös MS Teams-etäyhteys. Etäyhteyden roolia kurssilla arvioidaan kurssin kuluessa ja osallistumissuositusta tarkistetaan tarvittaessa. (Huomaa, että Teamsia voidaan joka tapauksessa käyttää myös paikan päällä kampuksella, esim. ryhmäkeskusteluissa, tallenteiden luomisessa ja tarkastelussa, ym.)
Tenttien ja uusintatenttien ajankohdat
Ei tenttiä.
Arviointimenetelmät ja arvioinnin perusteet
Kurssin arvosana määräytyy harjoituksista ja harjoitustyöstä kerättävien suorituspisteiden perusteella. Läpäisyyn ja arvosanaan 1 vaaditaan vähintään 30% pisteistä, maksimiarvosanaan vähintään 90% pisteistä (muut arvosanat lineaarisesti tältä väliltä).
Arviointiasteikko
0-5
Opiskelumuodot ja opetusmenetelmät
Kurssiin sisältyy oppimistehtävinä opetusviikkojen johdantoesityksiin ja teemoihin littyviä harjoituksia sekä suurempi harjoitustyö. Aikataulut, ohjeistus, aineistot ja tehtävien palautus Moodlessa.
Oppimateriaalit
Materiaali moodlessa, sisältäen linkkejä aihepiirin englanninkieliseen aineistoon (mm. työkalujen ohjeet ja dokumentaatio).Täydentävänä lisämateriaalina kirja Ertel, W., (2011). Introduction to Artificial Intelligence. Springer. (Saatavilla verkossa TUNI-kirjastosta, ks. Moodle-kurssi)
Opiskelijan ajankäyttö ja kuormitus
Intensiivisiä kontaktiopetuspäiviä (etäopetus) ja näihin liittyviä harjoituksia, joista osa on tarkoitus tehdä itseopiskeluna. Ks. kurssin aikataulu.
Arviointikriteerit - hylätty (0) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Alle 30% harjoitustehtävistä tehty.
Arviointikriteerit - tyydyttävä (1-2) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Opiskelija tuntee tekoälyn perusteet ja osaa välttävästi toteuttaa pieniä tekoälysovelluksia.
Harjoitustehtävistä tehty vähintään 30%, vähintään minimivaatimukset täyttävä ryhmätyö palautettu/esitetty.
Arviointikriteerit - hyvä (3-4) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Opiskelija tuntee tekoälyn perusteet, ja osaa suunnitella ja toteuttaa pieniä tekoälysovelluksia. Opiskelijalla on hyvä käsitys tekoälyn osa-alueista.
Harjoitustehtävistä tehty vähintään 60%, hyvä ryhmätyö palautettu/esitetty,
Arviointikriteerit - kiitettävä (5) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Opiskelija tuntee tekoälyn perusteet, ja osaa suunnitella ja toteuttaa pieniä tekoälysovelluksia. Opiskelijalla on hyvä käsitys tekoälyn osa-alueista ja hän pystyy oma-aloitteisesti ja kriittisesti arvioimaan eri perusmenetelmien soveltuvuutta yksinertaisten ongelmien ratkaisuun.
Harjoitustehtävistä tehty vähintään 90%, kiitettävä ryhmätyö palautettu/esitetty,