Siirry suoraan sisältöön

Tekoäly ja sen menetelmät (5 op)

Toteutuksen tunnus: 5Y00FD87-3003

Toteutuksen perustiedot


Ilmoittautumisaika

02.07.2022 - 04.09.2022

Ajoitus

01.08.2022 - 31.12.2022

Laajuus

5 op

Toteutustapa

Lähiopetus

Yksikkö

Dataosaaminen ja tekoäly YAMK

Toimipiste

TAMK Pääkampus

Opetuskielet

  • Suomi

Koulutus

  • Dataosaamisen ja tekoälyn ylempi tutkinto-ohjelma

Opettaja

  • Ossi Nykänen

Vastuuhenkilö

Ossi Nykänen

Ryhmät

  • 22YDT
    Dataosaaminen ja tekoäly 2022, ylempi tutkinto-ohjelma, insinööri

Tavoitteet (OJ)

Opiskelija tietää mitä tarkoittaa tekoäly ja millaisia tyypillisiä ongelmia sillä ratkotaan. Opiskelija tuntee tekoälyyn liittyvät keskeiset käsitteet ja algoritmit. Opiskelija tutustuu joihinkin tyypillisiin tekoälytyökaluihin ja niiden käyttöön. Tekoälyn sovellusalueita käydään lävitse.

Sisältö (OJ)

Tekoälyn olemus ja siihen liittyvät keskeiset käsitteet. Tekoälyllä tyypillisesti ratkaistavat ongelmat. Eri tyyppiset tekoälyalgoritmit. Tekoälyyn liittyvät työkalut. Tekoälysovelluksia.

Arviointikriteerit, tyydyttävä (1-2) (OJ)

Opiskelija tuntee tekoälyn yleisesti. Opiskelija osaa hyödyntää ohjatusti joitakin läpikäytyjä tekoälyyn liittyviä teknologioita. Opiskelija kykenee tunnistamaan eräitä sovellusalueita, johon tekoäly sopii.

Arviointikriteerit, hyvä (3-4) (OJ)

Opiskelija tuntee tekoälyn ja sen keskeiset käsitteet. Opiskelija osaa hyödyntää osaa kurssilla läpikäytyjä tekoälyyn liittyviä teknologioita. Opiskelija kykenee tunnistamaan tekoälyn käyttömahdollisuuksia eri sovellusalueilla.

Arviointikriteerit, kiitettävä (5) (OJ)

Opiskelija tuntee tekoälyn ja sen keskeiset käsitteet monipuolisesti. Opiskelija osaa hyödyntää luovasti keskeisimpiä läpikäytyjä tekoälyyn liittyviä teknologioita. Opiskelija kykenee arvioimaan erinomaisesti tekoälyn hyödyntämismahdollisuudet eri sovellusalueilla.

Aika ja paikka

Ks. periodiaikataulu. Kurssi starttaa hybridimuotoisena siten, että läsnäolo kampuksella on suositeltava osallistumistapa, mutta osallistumiseen tarjotaan mahdollisuuksien mukaan myös MS Teams-etäyhteys. Etäyhteyden roolia kurssilla arvioidaan kurssin kuluessa ja osallistumissuositusta tarkistetaan tarvittaessa. (Huomaa, että Teamsia voidaan joka tapauksessa käyttää myös paikan päällä kampuksella, esim. ryhmäkeskusteluissa, tallenteiden luomisessa ja tarkastelussa, ym.)

Tenttien ja uusintatenttien ajankohdat

Ei tenttiä.

Arviointimenetelmät ja arvioinnin perusteet

Kurssin arvosana määräytyy harjoituksista ja harjoitustyöstä kerättävien suorituspisteiden perusteella. Läpäisyyn ja arvosanaan 1 vaaditaan vähintään 30% pisteistä, maksimiarvosanaan vähintään 90% pisteistä (muut arvosanat lineaarisesti tältä väliltä).

Arviointiasteikko

0-5

Opiskelumuodot ja opetusmenetelmät

Kurssiin sisältyy oppimistehtävinä opetusviikkojen johdantoesityksiin ja teemoihin littyviä harjoituksia sekä suurempi harjoitustyö. Aikataulut, ohjeistus, aineistot ja tehtävien palautus Moodlessa.

Oppimateriaalit

Materiaali moodlessa, sisältäen linkkejä aihepiirin englanninkieliseen aineistoon (mm. työkalujen ohjeet ja dokumentaatio).Täydentävänä lisämateriaalina kirja Ertel, W., (2011). Introduction to Artificial Intelligence. Springer. (Saatavilla verkossa TUNI-kirjastosta, ks. Moodle-kurssi)

Opiskelijan ajankäyttö ja kuormitus

Intensiivisiä kontaktiopetuspäiviä (etäopetus) ja näihin liittyviä harjoituksia, joista osa on tarkoitus tehdä itseopiskeluna. Ks. kurssin aikataulu.

Arviointikriteerit - hylätty (0) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Alle 30% harjoitustehtävistä tehty.

Arviointikriteerit - tyydyttävä (1-2) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Opiskelija tuntee tekoälyn perusteet ja osaa välttävästi toteuttaa pieniä tekoälysovelluksia.
Harjoitustehtävistä tehty vähintään 30%, vähintään minimivaatimukset täyttävä ryhmätyö palautettu/esitetty.

Arviointikriteerit - hyvä (3-4) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Opiskelija tuntee tekoälyn perusteet, ja osaa suunnitella ja toteuttaa pieniä tekoälysovelluksia. Opiskelijalla on hyvä käsitys tekoälyn osa-alueista.
Harjoitustehtävistä tehty vähintään 60%, hyvä ryhmätyö palautettu/esitetty,

Arviointikriteerit - kiitettävä (5) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Opiskelija tuntee tekoälyn perusteet, ja osaa suunnitella ja toteuttaa pieniä tekoälysovelluksia. Opiskelijalla on hyvä käsitys tekoälyn osa-alueista ja hän pystyy oma-aloitteisesti ja kriittisesti arvioimaan eri perusmenetelmien soveltuvuutta yksinertaisten ongelmien ratkaisuun.
Harjoitustehtävistä tehty vähintään 90%, kiitettävä ryhmätyö palautettu/esitetty,