Siirry suoraan sisältöön

Integraalilaskenta (3 op)

Toteutuksen tunnus: 5N00EG75-3070

Toteutuksen perustiedot


Ilmoittautumisaika

05.02.2022 - 06.03.2022

Ajoitus

07.03.2022 - 29.04.2022

Laajuus

3 op

Toteutustapa

Lähiopetus

Yksikkö

Avoin AMK

Toimipiste

TAMK Pääkampus

Opetuskielet

  • Suomi

Koulutus

  • Avoin ammattikorkeakoulu

Opettaja

  • Anja Kuronen

Vastuuhenkilö

Anja Kuronen

Ryhmät

  • 21AVOTT
    Teollisuusteknologiayksikön avoimen polkuryhmä

Tavoitteet (OJ)

Opiskelija osaa
- käyttää integraaliin liittyviä käsitteitä ja merkintöjä
- määrittää integraalin graafisesti, numeerisesti ja symbolisesti
- soveltaa määrättyä integraalia pinta-alojen laskemisessa
- integraalin soveltamisen pienten differentiaalien menetelmällä
- ratkaista yksinkertaisia differentiaaliyhtälöitä sekä soveltaa niitä matemaattisessa mallintamisessa

Sisältö (OJ)

Käsitteet integraalifunktio ja määrätty integraali. Integraalin määrittäminen graafisesti, numeerisesti ja kaavojen avulla. Integraalin soveltaminen pinta-alojen ja tilavuuksien laskemisessa sekä pienten differentiaalien menetelmällä. Differentiaaliyhtälön käsite, sen alkeistapaukset ja differentiaaliyhtälöiden soveltaminen matemaattisessa mallintamisessa.

Esitietovaatimukset (OJ)

Insinöörimatematiikan valmentavat opinnot, Funktiot ja matriisit sekä Differentiaalilaskenta
tai vastaavat tiedot

Arviointikriteerit, tyydyttävä (1-2) (OJ)

Opiskelija ymmärtää määrätyn integraalin pinta-alatulkinnan ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia integraalin käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Lisäksi opiskelija osaa ratkaista yksinkertaisia differentiaaliyhtälöitä. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit, hyvä (3-4) (OJ)

Edellisten lisäksi opiskelija ymmärtää pienten differentiaalien menetelmän niin, että osaa soveltaa integraalin käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit, kiitettävä (5) (OJ)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut sekä käyttää oikeita matemaattisia merkintöjä. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Aika ja paikka

Lähiopetus lukujärjestyksen mukaisesti alkaen viikolta 10.

Tenttien ja uusintatenttien ajankohdat

Opintojakson tuntitestit (2 kpl)
21.3. luku 1
4.4. luku 2
ja
29.4. loppukoe normaaliin tuntiaikaan (Alustavat ajat, voi tulla muutoksia.)

Uusintaan osallistuminen edellyttää arvosanaa nolla.
1. uusinta ke 18.5.2022 klo 17.00-20.00 (aika tarkentuu myöhemmin)
2. uusinta/korotus ke 8.6.2022 klo 17.00-20.00 (aika tarkentuu myöhemmin)
Hyväksyttyä arvosanaa voi korottaa VAIN TÄSSÄ 2. uusintakokeessa (ei siis ensimmäisessä eikä myöhemmin)
Uusintakokeeseen ja korotukseen ilmoittaudutaan TAMKin tenttijärjestelmän kautta (Pakki).
Uusintaan osallistuminen edellyttää arvosanaa 0.
Sairastapauksissa vaaditaan lääkärintodistus.
Poissaolo kokeesta vastaa hylättyä suoritusta.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.

Arviointimenetelmät ja arvioinnin perusteet

Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan kokeilla ja viikoittain tarkastettavilla kotitehtävillä, joiden tekeminen vaikuttaa arvosanaan. Kotitehtäväpisteiden saamiseksi on osallistuttava kotitehtävien tarkistukseen (tarkemmat ohjeet Moodlessa). Opintojaksoon saattaa sisältyä myös ryhmässä tehtäviä osioita. Kokeen arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan sekä kurssikokeeseen osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois.

Tuntitesteistä saa pisteitä 6+6 ja loppukokeesta 18 pistettä. Varma läpipääsyraja on 40% kokonaispistemäärästä.
Kotitehtävillä saa lisäpisteitä oheisen taulukon mukaan:
yli 30% : 1
yli 50%: 2
yli 70% : 3
yli 90% : 4
Lopullinen arvosana määräytyy koepisteiden ja kotitehtäväpisteiden yhteismäärästä sekä osallistumisaktiivisuudesta.
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä- eikä tuntitestipisteet.

Arviointiasteikko

0-5

Opiskelumuodot ja opetusmenetelmät

lähiopetus (tai etäopetus tilanteen mukaan)
ryhmätyö
harjoitukset
tentti

Oppimateriaalit

Opettajan jakama materiaali
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX II CAS-laskin.

Opiskelijan ajankäyttö ja kuormitus

Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-lähiopetuksesta, jossa opettaja mukana
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, STACK-tehtävät, opetusvideot)
-kokeesta
Opettajan pitämiä lähitunteja on n. 28 h

Sisällön jaksotus

- määrätty integraali
- graafinen tulkinta
- numeerinen integrointi
- integraalifunktio ja integrointikaavoja
- analyysin peruslause (määrätyn integraalin ja integraalifunktion yhteys)
- pienten differentiaalien menetelmä ja sovellustehtäviä
- differentiaaliyhtälöiden perusteet
- muuttujien erottaminen ja sovelluksia
- lineaarinen vakiokertoiminen differentiaaliyhtälö ja sovelluksia

Toteutuksen valinnaiset suoritustavat

Ei ole.

Harjoittelu- ja työelämäyhteistyö

Ei ole.

Lisätietoja opiskelijoille

Opetus alkaa lukujärjestyksen mukaisesti.
Opintojaksoon on Moodle-toteutus.

Arviointikriteerit - hylätty (0) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Opiskelija osallistuu säännöllisesti opetukseen ja opetusmenetelmiin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.

Arviointikriteerit - tyydyttävä (1-2) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Opiskelija ymmärtää määrätyn integraalin pinta-alatulkinnan ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia integraalin käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Lisäksi opiskelija osaa ratkaista yksinkertaisia differentiaaliyhtälöitä. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä on vielä haparointia.Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Arviointikriteerit - hyvä (3-4) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Edellisten lisäksi opiskelija ymmärtää pienten differentiaalien menetelmän niin, että osaa soveltaa integraalin käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut.Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Arviointikriteerit - kiitettävä (5) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut sekä käyttää oikeita matemaattisia merkintöjä. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.