Siirry suoraan sisältöön

Machine Learning (5op)

Toteutuksen tunnus: 5G00DM02-3002

Toteutuksen perustiedot


Ilmoittautumisaika
01.06.2021 - 03.09.2021
Ilmoittautuminen toteutukselle on päättynyt.
Ajoitus
30.08.2021 - 24.12.2021
Toteutus on päättynyt.
Laajuus
5 op
Toteutustapa
Lähiopetus
Yksikkö
Tietotekniikka
Toimipiste
TAMK Pääkampus
Opetuskielet
englanti
Paikat
0 - 40
Koulutus
Bachelor's Degree Programme in Software Engineering
Opettajat
Tero Soininen
Vastuuhenkilö
Hanna Kinnari-Korpela
Opintojakso
5G00DM02

Osaamistavoitteet (Opintojakso)

The student is able to create and use Machine Learning Algorithms in Python. The student learns how to make predictions and analysis and knows which Machine Learning model to choose for each type of problem.

Sisältö (Opintojakso)

Data Preprocessing, Machine Learning models like classification and regression, Python Libraries for Data Science.

Esitietovaatimukset (Opintojakso)

Big Data Systems, Basic knowledge of programming

Arviointikriteerit, tyydyttävä (1-2) (Opintojakso)

Student is able to conduct data Pre-processing for different datasets with guidance. Student knows about machine Learning models like classification and regression. Student is able to exploit some Python Libraries for Data Science with guidance.

Arviointikriteerit, hyvä (3-4) (Opintojakso)

Student is able to conduct data Pre-processing for different datasets. Student knows and understands machine Learning models like classification and regression. Student is able to exploit Python Libraries for Data Science.

Arviointikriteerit, kiitettävä (5) (Opintojakso)

Student is able to independently conduct diversely data Pre-processing for various datasets. Student knows and understands in depth machine Learning models like classification and regression. Student is able to exploit diversely Python Libraries for Data Science in various situations.

Tenttien ja uusintatenttien ajankohdat

No exam.

Arviointimenetelmät ja arvioinnin perusteet

The grade of the course consists of both exercises and practical work (max 50 p). The requirements for the practical will come to Moodle during the course.

The grades are based on the table below:
0 0
1 12
2 22
3 30
4 38
5 46

Weekly exercises can bring in 10 extra points (1 point / week assingment, you tried to solve all the tasks).

Arviointiasteikko

0-5

Opiskelumuodot ja opetusmenetelmät

Teaching in teams. Links and materials on moodle.

Oppimateriaalit

Teaching in teams. Links and materials on moodle.

Arviointikriteerit - hylätty (0) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)

Practical work has not been returned to moodle

Siirry alkuun