Data Analysis and Visualization (7op)
Toteutuksen tunnus: 5G00FT11-3001
Toteutuksen perustiedot
- Ilmoittautumisaika
- 15.11.2021 - 09.01.2022
- Ilmoittautuminen toteutukselle on päättynyt.
- Ajoitus
- 14.01.2022 - 29.04.2022
- Toteutus on päättynyt.
- Laajuus
- 7 op
- Toteutustapa
- Lähiopetus
- Yksikkö
- Tietotekniikka
- Toimipiste
- TAMK Pääkampus
- Opetuskielet
- englanti
- Paikat
- 0 - 62
- Koulutus
- Bachelor's Degree Programme in Software Engineering
Osaamistavoitteet (Opintojakso)
The student understands basic concepts of Statistics and Classical Data Analysis. The student can collect and preprocess data for analysis and visualization. The student is able make appropriate data analyses and visualizations for the problem. The student can evaluate both the quality and the applicability of the results.
Sisältö (Opintojakso)
Course content is:
- Data collection and Data Preprocessing
- Visual analytics process
- Basic methods of Statistics and Classical Data Analysis
- Data analysis with Analytics Tools and Python
- Visualization models
- Critical evaluation of results
Arviointikriteerit, tyydyttävä (1-2) (Opintojakso)
Student can sufficiently implement data collection and data preprocessing for a given task. Student knows how to implement visual analytics processes. Student knows some basic methods of statistics and classical data analysis. The student can solve some given data analysis problems with analytics tools or python. Student can use given visualization models. Student understands the meaning of the results.
Arviointikriteerit, hyvä (3-4) (Opintojakso)
Student can implement data collection and data preprocessing for a given task. Student can implement visual analytics processes. Student knows and understands basic methods of statistics and classical data analysis. The student can solve given data analysis problems with analytics tools and python. Student knows and can exploit given visualization models. Student can evaluate the meaning of the results.
Arviointikriteerit, kiitettävä (5) (Opintojakso)
Student can implement data collection and data preprocessing with the appropriate methods. Student can implement various visual analytics processes. Student knows and understands in depth basic methods of statistics and classical data analysis. The student can solve versatile data analysis problems with analytics tools and python. Student knows and can exploit visualization models as appropriate. Student can critically evaluate and interpret the meaning of the results.
Tenttien ja uusintatenttien ajankohdat
No exam.
Arviointiasteikko
0-5
Opiskelumuodot ja opetusmenetelmät
Contact teaching
Assignments (the primary learning method)
Group work and presentation
Oppimateriaalit
Moodle course with links to additional material.
Opiskelijan ajankäyttö ja kuormitus
See the period timetable. See the Moodle course for instructions when and how to attend the contact teaching hours.
Lisätietoja opiskelijoille
NOTE: In accordance with the current Covid-19 guidelines, teaching in the Industrial Technology Unit shall be arranged (at least) UNTIL January 16, 2022 ONLY ONLINE.I .e. the course at least starts remotely via MS Teams.
Old info (prior to the aforementioned covid instructions): By default, the course would be organized f2f at TAMK main campus (partial remote or hybrid participation via MS Teams might be available). See the Moodle course for instructions how to attend the contact teaching hours: https://moodle.tuni.fi/course/view.php?id=24456 . Please note that any additional covid restrictions might imply organizational changes to the course.
Arviointikriteerit - hylätty (0) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Less than 30% of the exercises completed.
Arviointikriteerit - tyydyttävä (1-2) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
The student is familiar with the essential concepts and can implement simple applications with specific instructions. At least 30% of the exercises completed.
Arviointikriteerit - hyvä (3-4) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
The student is familiar with the basic concepts and can implement simple applications autonomously. At least 60% of the exercises completed.
Arviointikriteerit - kiitettävä (5) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
The student is familiar with the main concepts, is able to critically evaluate application requirements, and can implement realistic applications autonomously. At least 90% of the exercises completed. A good group work completed and presented.