Funktiot ja matriisit (3 op)
Toteutuksen tunnus: 5N00BC64-3063
Toteutuksen perustiedot
- Ilmoittautumisaika
- 01.08.2016 - 09.09.2016
- Ilmoittautuminen toteutukselle on päättynyt.
- Ajoitus
- 24.10.2016 - 20.12.2016
- Toteutus on päättynyt.
- Laajuus
- 3 op
- Toteutustapa
- Lähiopetus
- Yksikkö
- Rakennustekniikka
- Toimipiste
- TAMK Pääkampus
- Opetuskielet
- suomi
- Koulutus
- Rakennus- ja yhdyskuntatekniikan tutkinto-ohjelma, vuosina 2014-2018 aloittaneet
Osaamistavoitteet (Opintojakso)
Opiskelija
- ymmärtää funktion peruskäsitteen ja tunnistaa erilaisten funktioiden tyypilliset ominaisuudet
- osaa ratkaista perusfunktioihin liittyviä yhtälöitä ja soveltaa niitä tekniikan ongelmissa ja tunnistaa niiden kuvaajat
- osaa tunnistaa alkeisfunktioiden kuvaajat
- osaa suorittaa matriisien peruslaskutoimituksia ja soveltaa niitä käytännön ongelmissa
Sisältö (Opintojakso)
Funktion peruskäsitteet. Polynomi-, rationaali-, potenssi-, eksponentti-, logaritmi- ja trigonometriset funktiot, niiden kuvaajat ja yhtälöt. Matriisien perusoperaatiot, lineaarinen yhtälöryhmä matriisimuodossa.
Esitietovaatimukset (Opintojakso)
Insinöörimatematiikan valmentavat opinnot tai vastaavat tiedot.
Tenttien ja uusintatenttien ajankohdat
Opintojakson kurssikoe pidetään normaaliin tuntiaikaan 16.12.2016 klo 8.00-11.00. Ne, joille tämä aika ei sovi, voivat tehdä kokeen 20.12. klo 11.00.-14.00. (luokkatilan ilmoitan sähköpostilla)
Uusintakokeet:
1. uusintakoe 18.1.2017 klo 17-20 Juhlasalissa
2. uusintakoe/ korotus 8.2.2017 klo 17-20 Juhlasalissa
Hyväksyttyä arvosanaa voi korottaa 2. uusintakokeessa (ei siis ensimmäisessä)
Uusintakokeeseen ja korotukseen ilmoittaudutaan TAMKin tenttijärjestelmän kautta.
Uusintaan osallistuminen edellyttää arvosanaa 0.
Poissaolo kokeesta vastaa hylättyä suoritusta.
Sairastapauksissa vaaditaan lääkärintodistus.
Arviointimenetelmät ja arvioinnin perusteet
Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan kokeilla ja viikoittain tarkastettavilla harjoitustehtävillä, joiden tekeminen vaikuttaa arvosanaan. Kotitehtäväpisteiden saamiseksi on osallistuttava kotitehtävien tarkistukseen ja oltava valmis esittämään oma ratkaisunsa. Kokeen arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan sekä kurssikokeeseen osallistumista.
Harjoitustehtävillä saa lisäpisteitä oheisen taulukon mukaan:
yli 30% : 1
yli 40% : 2
yli 50% : 3
yli 70% : 4
yli 90% : 5
Harjoitustehtäväpisteet eivät vaikuta kurssin läpipääsyyn vaan niillä voi korottaa arvosanaa. Lopullinen arvosana määräytyy kokeen, harjoitustehtäväpisteiden ja osallistumisaktiivisuuden perusteella.
Harjoitustehtäväpisteet vaikuttavat myös uusinnan/ korotuksen tulokseen.
Opiskelumuodot ja opetusmenetelmät
Lähiopetus, itsenäinen opiskelu, tuntiharjoitukset ja kotitehtävät, videomateriaalit, STACK-tehtävät, tentti
Oppimateriaalit
Opettajan jakama materiaali, joka löytyy Tabulasta.
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi laskin TI-nspire CX CAS.
Opiskelijan ajankäyttö ja kuormitus
Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
- lähiopetuksesta, jossa opettaja mukana
- ryhmätöistä (opettaja ei ole mukana),
- itsenäisestä työskentelystä
- kokeista
Opettajan pitämiä lähitunteja sisältäen kokeet on n. 36 h.
Sisällön jaksotus
Funktioiden perusteet
Polynomifunktiot (erityisesti suora ja paraabeli)
Eksponentti- ja logaritmifunktiot sekä -yhtälöt
Matriisilaskenta
Lisätietoja opiskelijoille
Opetus alkaa lukujärjestyksen mukaisesti viikolla 43.
Opintojaksoon tulee Tabula-toteutus. Opettajalta saa Tabula-avaimen.
Arviointikriteerit - tyydyttävä (1-2) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Opiskelija ymmärtää matriisien ja funktioiden peruskäsitteet ja tunnistaa eri tyyppisten funktioiden kuvaajia. Lisäksi hän osaa ratkaista eri funktioihin liittyviä yhtälöitä ja yksinkertaisia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä on vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Arviointikriteerit - hyvä (3-4) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Edellisten lisäksi opiskelija osaa soveltaa opintojakson asioita erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Arviointikriteerit - kiitettävä (5) (Ei käytössä, kts Opintojakson Arviointikriteerit ylempänä)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja hän osaa soveltaa niitä vaikeampiin ongelmiin. Opiskelijalla on taito esittää ja perustella loogisesti valitut ratkaisut. Ratkaisut esitetään selkeästi ja matemaattisia käsitteitä käytetään täsmällisesti. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.