Tekniikan matematiikka LVI-talotekniikkainsinööreilleLaajuus (4 op)
Tunnus: 5N00GN86
Laajuus
4 op
Osaamistavoitteet
Tällä opintojaksolla opit perusteet tekniikan taustalla olevasta matematiikasta, aihepiirinä geometria, vektorit ja funktiot
• tunnistat aihepiireihin liittyvät matemaattiset merkinnät ja osaat käyttää niistä keskeisimpiä
• osaat vinokulmaisen kolmion ratkaisemisen
• osaat laskea erilaisten tasokuvioiden osia ja pinta-aloja sekä erilaisten kappaleiden tilavuuksia
• osata ratkaista vektorilaskennan perustehtäviä
• osaat funktioiden peruskäsitteet ja tunnistat erilaisten funktioiden tyypilliset ominaisuudet
• tunnistat erityyppisten funktioiden kuvaajia osaat käyttää sekä soveltaa aihepiirien asioita tekniikan ongelmissa
• osaat laatia tekniikan ongelmista matemaattisen mallin ja osaat soveltaa sitä ongelman ratkaisussa
• kykenet esittämään ja perustelemaan loogisesti valitut ratkaisut
• osaat arvioida tekemiensä ratkaisujen järkevyyttä ja oikeellisuutta
Sisältö
• suorakulmainen kolmio, kulma, kulmayksiköt
• kolmion ja monikulmioiden alat
• trigonometriset funktiot yleisesti
• vinokulmainen kolmio (sini- ja kosinilause)
• ympyräoppi, avaruusgeometria
• vektoreiden summa, erotus, luvulla kertominen
• tason vektorin koordinaatti- ja napakoordinaattiesitys
• avaruuden vektorit (maininta lyhyesti)
• funktio ja siihen liittyviä käsitteitä
• 1.asteen polynomifunktio, suora (yhtälön muodostaminen kuvaajasta), lineaarinen riippuvuus
• 2.asteen polynomifunktio, paraabeli
• suoraan ja kääntäen verrannollisuus, paloittain määritelty funktio
Arviointikriteerit, tyydyttävä (1-2)
Opiskelija:
• tunnistaa aihepiireihin liittyvät matemaattiset merkinnät ja osaa käyttää niistä joitain
• osaa suorakulmaisen ja vinokulmaisen kolmion ratkaisemisen
• osaa laskea erilaisten tasokuvioiden pinta-aloja ja kappaleiden tilavuuksia
• tuntee tasovektoreiden laskutoimituksia
• osaa ratkaista esitettyjen esimerkkien kaltaisia vektoritehtäviä
• tunnistaa funktioiden peruskäsitteitä ja erilaisten funktioiden ominaisuuksia
• valittujen ratkaisujen esitykset ja perustelut saattavat olla puutteellisia
• tehtyjen ratkaisujen järkevyyden ja oikeellisuuden arvioinnissa saattaa olla puutteita
Arviointikriteerit, hyvä (3-4)
Opiskelija:
• tunnistaa aihepiireihin liittyvät matemaattiset merkinnät ja osaa käyttää niistä keskeisimpiä
• osaa vinokulmaisen kolmion ratkaisemisen
• osaa laskea erilaisten tasokuvioiden osia ja pinta-aloja sekä erilaisten kappaleiden tilavuuksia
• osaa ratkaista vektorilaskennan perustehtäviä
• osaa funktioiden peruskäsitteet ja tunnistaa erilaisten funktioiden tyypilliset ominaisuudet
• tunnistaa erityyppisten funktioiden kuvaajia osaa käyttää sekä soveltaa aihepiirien asioita tekniikan ongelmissa
• osaa laatia tekniikan ongelmista matemaattisen mallin ja osaa soveltaa sitä ongelman ratkaisussa
• kykenee esittämään ja perustelemaan loogisesti valitut ratkaisut
• osaa arvioida tekemiensä ratkaisujen järkevyyttä ja oikeellisuutta
Arviointikriteerit, kiitettävä (5)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja hän osaa soveltaa niitä vaativampiin ongelmiin. Opiskelijalla on taito esittää ja perustella loogisesti valitut ratkaisut. Ratkaisut esitetään selkeästi ja matemaattisia käsitteitä käytetään täsmällisesti. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Ilmoittautumisaika
02.12.2024 - 26.01.2025
Ajoitus
09.01.2025 - 04.05.2025
Laajuus
4 op
Toteutustapa
Lähiopetus
Yksikkö
TAMK Matematiikka ja fysiikka
Toimipiste
TAMK Pääkampus
Opetuskielet
- Suomi
Koulutus
- Talotekniikan tutkinto-ohjelma, LVI-talotekniikka
Opettaja
- Sara Nortunen
Vastuuhenkilö
Sara Nortunen
Ryhmät
-
25AI253LVI-talotekniikka, monimuoto
Tavoitteet (OJ)
Tällä opintojaksolla opit perusteet tekniikan taustalla olevasta matematiikasta, aihepiirinä geometria, vektorit ja funktiot
• tunnistat aihepiireihin liittyvät matemaattiset merkinnät ja osaat käyttää niistä keskeisimpiä
• osaat vinokulmaisen kolmion ratkaisemisen
• osaat laskea erilaisten tasokuvioiden osia ja pinta-aloja sekä erilaisten kappaleiden tilavuuksia
• osata ratkaista vektorilaskennan perustehtäviä
• osaat funktioiden peruskäsitteet ja tunnistat erilaisten funktioiden tyypilliset ominaisuudet
• tunnistat erityyppisten funktioiden kuvaajia osaat käyttää sekä soveltaa aihepiirien asioita tekniikan ongelmissa
• osaat laatia tekniikan ongelmista matemaattisen mallin ja osaat soveltaa sitä ongelman ratkaisussa
• kykenet esittämään ja perustelemaan loogisesti valitut ratkaisut
• osaat arvioida tekemiensä ratkaisujen järkevyyttä ja oikeellisuutta
Sisältö (OJ)
• suorakulmainen kolmio, kulma, kulmayksiköt
• kolmion ja monikulmioiden alat
• trigonometriset funktiot yleisesti
• vinokulmainen kolmio (sini- ja kosinilause)
• ympyräoppi, avaruusgeometria
• vektoreiden summa, erotus, luvulla kertominen
• tason vektorin koordinaatti- ja napakoordinaattiesitys
• avaruuden vektorit (maininta lyhyesti)
• funktio ja siihen liittyviä käsitteitä
• 1.asteen polynomifunktio, suora (yhtälön muodostaminen kuvaajasta), lineaarinen riippuvuus
• 2.asteen polynomifunktio, paraabeli
• suoraan ja kääntäen verrannollisuus, paloittain määritelty funktio
Arviointikriteerit, tyydyttävä (1-2) (OJ)
Opiskelija:
• tunnistaa aihepiireihin liittyvät matemaattiset merkinnät ja osaa käyttää niistä joitain
• osaa suorakulmaisen ja vinokulmaisen kolmion ratkaisemisen
• osaa laskea erilaisten tasokuvioiden pinta-aloja ja kappaleiden tilavuuksia
• tuntee tasovektoreiden laskutoimituksia
• osaa ratkaista esitettyjen esimerkkien kaltaisia vektoritehtäviä
• tunnistaa funktioiden peruskäsitteitä ja erilaisten funktioiden ominaisuuksia
• valittujen ratkaisujen esitykset ja perustelut saattavat olla puutteellisia
• tehtyjen ratkaisujen järkevyyden ja oikeellisuuden arvioinnissa saattaa olla puutteita
Arviointikriteerit, hyvä (3-4) (OJ)
Opiskelija:
• tunnistaa aihepiireihin liittyvät matemaattiset merkinnät ja osaa käyttää niistä keskeisimpiä
• osaa vinokulmaisen kolmion ratkaisemisen
• osaa laskea erilaisten tasokuvioiden osia ja pinta-aloja sekä erilaisten kappaleiden tilavuuksia
• osaa ratkaista vektorilaskennan perustehtäviä
• osaa funktioiden peruskäsitteet ja tunnistaa erilaisten funktioiden tyypilliset ominaisuudet
• tunnistaa erityyppisten funktioiden kuvaajia osaa käyttää sekä soveltaa aihepiirien asioita tekniikan ongelmissa
• osaa laatia tekniikan ongelmista matemaattisen mallin ja osaa soveltaa sitä ongelman ratkaisussa
• kykenee esittämään ja perustelemaan loogisesti valitut ratkaisut
• osaa arvioida tekemiensä ratkaisujen järkevyyttä ja oikeellisuutta
Arviointikriteerit, kiitettävä (5) (OJ)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja hän osaa soveltaa niitä vaativampiin ongelmiin. Opiskelijalla on taito esittää ja perustella loogisesti valitut ratkaisut. Ratkaisut esitetään selkeästi ja matemaattisia käsitteitä käytetään täsmällisesti. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Aika ja paikka
Opetus lukujärjestyksen mukaisesti.
Tenttien ja uusintatenttien ajankohdat
Kurssi suoritetaan tentillä, joka pidetään xx.x.2025.
1. uusintatentti 14.5.2025 klo 16-19
2. uusintatentti 4.6.2025 klo 16-19
Arviointimenetelmät ja arvioinnin perusteet
Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan tentillä ja viikoittain tarkastettavilla harjoitustehtävillä.
Arvosteluun vaikuttavat kotitehtävät (maksimi 6 p) ja loppukoe (maksimi 34 p). Kokeen arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää osallistumista opintojakson työmuotoihin (vähintään 30 % kotitehtävistä tehtynä sekä osallistuminen kokeeseen). Arvosanan 1 saa noin 12 pisteellä kurssin eri arviointimuotojen yhteenlasketusta maksimipistemäärästä, kuitenkin siten, että loppukokeesta pitää saada vähintään 6 pistettä.
Uusinta- ja korotus:
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä- eikä aiemmat koepisteet. Siinä kurssiarvosana määräytyy pelkästään kokeen perustella ja läpipääsyyn vaaditaan 1/3 kokeen maksimipistemäärästä.
Poissaolo kokeesta/tentistä vastaa 0 pisteen suoritusta. Sairaustapauksissa vaaditaan lääkärintodistus.
Mikäli opiskelija hyödyntää tekoälyä tehtävien ratkaisemisessa, niin ratkaisut pitää kuitenkin esittää toteutuksella opetettavin käsittein, merkinnöin ja menetelmin ja välivaiheet on osattava selittää.
Arviointiasteikko
0-5
Opiskelumuodot ja opetusmenetelmät
Lähiopetus, etäopetus, itsenäinen opiskelu, tuntiharjoitukset ja kotitehtävät, opetusvideot, kokeet.
Oppimateriaalit
Opettajan Moodlessa jakama materiaali (pdf-materiaalit, videot, interaktiiviset STACK- tehtävät)
Kaavasto: Tammertekniikan Tekniikan kaavasto tai MAOL
Laskinsuositus: symbolinen TI-nspire CX CAS/ TI-nspire CX II CAS -laskin. Tällä opintojaksolla keskitytään lähinnä "käsinlaskentaan", joten ihan peruslaskimella, josta löytyy sin, cos, tan ja neliöjuuri selviää. Opintojaksolla voi kuitenkin jo harjoitella myös tehokkaamman laskimen käyttöä. Symbolista laskinta tarvitaan seuraavalla matematiikan opintojaksolla.
Opiskelijan ajankäyttö ja kuormitus
Opiskelijan keskimääräinen työmäärä on n. 108 h, joka koostuu:
- lähiopetuksesta, jossa opettaja mukana
- kotitehtävistä ja mahdollisista ryhmätöistä (opettaja ei ole mukana),
- itsenäisestä työskentelystä
- kokeista
Opettajan pitämiä lähitunteja on n. 30 h.
Sisällön jaksotus
Sisällön jaksotus on suuntaa antava. Osa opsissa mainituista kokonaisuuksista on tarkoitus suorittaa itsenäisenä opiskeluna ja/tai ryhmätöinä.
Opintojakson keskeinen sisältö:
- Suorakulmaisen ja vinokulmaisen kolmion ratkaiseminen ja erilaisten tasokuvioiden pinta-aloja
- Ympyräoppi
- Vektorilaskentaa tasossa
- Funktioiden peruskäsitteet ja merkinnät.
- Polynomifunktiot (erityisesti suora ja paraabeli) ja verrannollisuudet
Toteutuksen valinnaiset suoritustavat
Ei ole.
Harjoittelu- ja työelämäyhteistyö
Ei ole.
Kansainvälisyys
Ei ole.
Ilmoittautumisaika
02.07.2024 - 10.09.2024
Ajoitus
09.09.2024 - 22.12.2024
Laajuus
4 op
Toteutustapa
Lähiopetus
Yksikkö
TAMK Matematiikka ja fysiikka
Toimipiste
TAMK Pääkampus
Opetuskielet
- Suomi
Koulutus
- Talotekniikan tutkinto-ohjelma, LVI-talotekniikka
Opettaja
- Sini Ahlberg
Vastuuhenkilö
Sini Ahlberg
Ryhmät
-
24I253LVI-talotekniikka
Tavoitteet (OJ)
Tällä opintojaksolla opit perusteet tekniikan taustalla olevasta matematiikasta, aihepiirinä geometria, vektorit ja funktiot
• tunnistat aihepiireihin liittyvät matemaattiset merkinnät ja osaat käyttää niistä keskeisimpiä
• osaat vinokulmaisen kolmion ratkaisemisen
• osaat laskea erilaisten tasokuvioiden osia ja pinta-aloja sekä erilaisten kappaleiden tilavuuksia
• osata ratkaista vektorilaskennan perustehtäviä
• osaat funktioiden peruskäsitteet ja tunnistat erilaisten funktioiden tyypilliset ominaisuudet
• tunnistat erityyppisten funktioiden kuvaajia osaat käyttää sekä soveltaa aihepiirien asioita tekniikan ongelmissa
• osaat laatia tekniikan ongelmista matemaattisen mallin ja osaat soveltaa sitä ongelman ratkaisussa
• kykenet esittämään ja perustelemaan loogisesti valitut ratkaisut
• osaat arvioida tekemiensä ratkaisujen järkevyyttä ja oikeellisuutta
Sisältö (OJ)
• suorakulmainen kolmio, kulma, kulmayksiköt
• kolmion ja monikulmioiden alat
• trigonometriset funktiot yleisesti
• vinokulmainen kolmio (sini- ja kosinilause)
• ympyräoppi, avaruusgeometria
• vektoreiden summa, erotus, luvulla kertominen
• tason vektorin koordinaatti- ja napakoordinaattiesitys
• avaruuden vektorit (maininta lyhyesti)
• funktio ja siihen liittyviä käsitteitä
• 1.asteen polynomifunktio, suora (yhtälön muodostaminen kuvaajasta), lineaarinen riippuvuus
• 2.asteen polynomifunktio, paraabeli
• suoraan ja kääntäen verrannollisuus, paloittain määritelty funktio
Arviointikriteerit, tyydyttävä (1-2) (OJ)
Opiskelija:
• tunnistaa aihepiireihin liittyvät matemaattiset merkinnät ja osaa käyttää niistä joitain
• osaa suorakulmaisen ja vinokulmaisen kolmion ratkaisemisen
• osaa laskea erilaisten tasokuvioiden pinta-aloja ja kappaleiden tilavuuksia
• tuntee tasovektoreiden laskutoimituksia
• osaa ratkaista esitettyjen esimerkkien kaltaisia vektoritehtäviä
• tunnistaa funktioiden peruskäsitteitä ja erilaisten funktioiden ominaisuuksia
• valittujen ratkaisujen esitykset ja perustelut saattavat olla puutteellisia
• tehtyjen ratkaisujen järkevyyden ja oikeellisuuden arvioinnissa saattaa olla puutteita
Arviointikriteerit, hyvä (3-4) (OJ)
Opiskelija:
• tunnistaa aihepiireihin liittyvät matemaattiset merkinnät ja osaa käyttää niistä keskeisimpiä
• osaa vinokulmaisen kolmion ratkaisemisen
• osaa laskea erilaisten tasokuvioiden osia ja pinta-aloja sekä erilaisten kappaleiden tilavuuksia
• osaa ratkaista vektorilaskennan perustehtäviä
• osaa funktioiden peruskäsitteet ja tunnistaa erilaisten funktioiden tyypilliset ominaisuudet
• tunnistaa erityyppisten funktioiden kuvaajia osaa käyttää sekä soveltaa aihepiirien asioita tekniikan ongelmissa
• osaa laatia tekniikan ongelmista matemaattisen mallin ja osaa soveltaa sitä ongelman ratkaisussa
• kykenee esittämään ja perustelemaan loogisesti valitut ratkaisut
• osaa arvioida tekemiensä ratkaisujen järkevyyttä ja oikeellisuutta
Arviointikriteerit, kiitettävä (5) (OJ)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja hän osaa soveltaa niitä vaativampiin ongelmiin. Opiskelijalla on taito esittää ja perustella loogisesti valitut ratkaisut. Ratkaisut esitetään selkeästi ja matemaattisia käsitteitä käytetään täsmällisesti. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Aika ja paikka
Opetus lukujärjestyksen mukaisesti.
Tenttien ja uusintatenttien ajankohdat
Kurssi suoritetaan kolmella välikokeella
1. välikoe 30.9.
2. välikoe 6.11.
3. välikoe 18.12.
1. Uusintatentti 17.1.2025 klo 13-16
2. Uusintatentti 31.1.2025 klo 13-16
Arviointimenetelmät ja arvioinnin perusteet
Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan kahdella välikokeella ja viikoittain tarkastettavilla harjoitustehtävillä,
Arvosteluun vaikuttavat kotitehtävät (maksimi 9 p) ja välikokeet (maksimi 36 p). Kokeen arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää osallistumista opintojakson työmuotoihin (kotitehtävien teko sekä osallistuminen kokeeseen). Arvosanan 1 saa 14 pisteellä kurssin eri arviointimuotojen yhteenlasketusta maksimipistemäärästä, kuitenkin siten, että kokeista pitää saada vähintään yhteensä 7 pistettä.
Uusinta- ja korotus:
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä- eikä aiemmat koepisteet. Siinä kurssiarvosana määräytyy pelkästään kokeen perustella ja läpipääsyyn vaaditaan 1/3 kokeen maksimipistemäärästä.
Mikäli opiskelija hyödyntää tekoälyä tehtävien ratkaisemisessa, niin ratkaisut pitää kuitenkin esittää toteutuksella opetettavin käsittein, merkinnöin ja menetelmin ja välivaiheet on osattava selittää.
Arviointiasteikko
0-5
Opiskelumuodot ja opetusmenetelmät
Lähiopetus, itsenäinen opiskelu, tuntiharjoitukset ja kotitehtävät, opetusvideot, välikokeet.
Oppimateriaalit
Opintojakson oppimateriaalina on sähköisiä opetusmonisteita ja opetusvideoita, jotka opiskelija löytää Moodlesta.
Kaavasto: Tammertekniikan Tekniikan kaavasto tai MAOL
Laskin: Symbolinen laskin, esim. TI-Nspire.
Opiskelijan ajankäyttö ja kuormitus
Opiskelijan keskimääräinen työmäärä on n. 108 h, joka koostuu:
- lähiopetuksesta, jossa opettaja mukana
- kotitehtävistä ja mahdollisista ryhmätöistä (opettaja ei ole mukana),
- itsenäisestä työskentelystä
- kokeista
Opettajan pitämiä lähitunteja on n. 50 h. Lisäksi opiskelijalla on mahdollisuus osallistua matematiikan tukipajaan maanantaisin klo 14-16.
Sisällön jaksotus
Jaksotus on suuntaa antava.
Tasogeometria
Tason vektorit
Funktiot
Harjoittelu- ja työelämäyhteistyö
Ei ole.
Kansainvälisyys
Ei ole.