Tekniikan matematiikka autotekniikan insinööreilleLaajuus (4 op)
Tunnus: 5N00HB18
Laajuus
4 op
Osaamistavoitteet
Tällä opintojaksolla opit perusteet tekniikan taustalla olevasta matematiikasta, aihepiirinä geometria, vektorit ja funktiot
Opiskelija:
• tunnistat aihepiireihin liittyvät matemaattiset merkinnät ja osat käyttää niistä keskeisimpiä
• osaat vinokulmaisen kolmion ratkaisemisen ja osaat laskea erilaisten tasokuvioiden osia ja pinta-aloja
• tunnet taso- ja avaruuden vektoreiden laskutoimitukset
• osaat ratkaista tasovektoreiden ja avaruuden vektoreiden perustehtäviä
• osaat funktioiden peruskäsitteet ja tunnistat erilaisten funktioiden tyypilliset ominaisuudet
• tunnistat erityyppisten funktioiden kuvaajia
• tunnet sinikäyrän parametrien merkityksen
• osaat käyttää sekä soveltaa aihepiirien asioita tekniikan ongelmissa
• osaat laatia tekniikan ongelmista matemaattisen mallin ja osaat soveltaa sitä ongelman ratkaisussa
• kykenet esittämään ja perustelemaan loogisesti valitut ratkaisut
• osaat arvioida tekemiensä ratkaisujen järkevyyttä ja oikeellisuutta
Sisältö
• suorakulmainen kolmio, kulma, kulmayksiköt
• kolmion ja monikulmioiden alat
• trigonometriset funktiot yleisesti
• vinokulmainen kolmio (sini- ja kosinilause)
•vektoreiden summa, erotus, luvulla kertominen
• tason vektorin koordinaatti- ja napakoordinaattiesitys
• avaruuden vektorit
• vektoreiden pistetulo ja ristitulo (3D)
• funktio ja siihen liittyviä käsitteitä
• 1.asteen polynomifunktio, suora (yhtälön muodostaminen kuvaajasta), lineaarinen riippuvuus
• 2.asteen polynomifunktio, paraabeli
• suoraan ja kääntäen verrannollisuus, paloittain määritelty funktio
• sinikäyrä
Arviointikriteerit, tyydyttävä (1-2)
Opiskelija:
• tunnistaa aihepiireihin liittyvät matemaattiset merkinnät ja osaa käyttää niistä joitain
• osaa vinokulmaisen kolmion ratkaisemisen ja osaa laskea erilaisten tasokuvioiden osia ja pinta-aloja
• tuntee taso- ja avaruuden vektoreiden laskutoimituksia
• osaa ratkaista esitettyjen esimerkkien kaltaisia vektoritehtäviä
• tunnistaa funktioiden peruskäsitteitä ja erilaisten funktioiden ominaisuuksia
• valittujen ratkaisujen esitykset ja perustelut saattavat olla puutteellisia
• tehtyjen ratkaisujen järkevyyden ja oikeellisuuden arvioinnissa saattaa olla puutteita
Arviointikriteerit, hyvä (3-4)
Opiskelija:
• tunnistaa aihepiireihin liittyvät matemaattiset merkinnät ja osaa käyttää niistä keskeisimpiä
• osaa vinokulmaisen kolmion ratkaisemisen ja osaa laskea erilaisten tasokuvioiden osia ja pinta-aloja
• tuntee taso- ja avaruuden vektoreiden laskutoimitukset
• osaa ratkaista tasovektoreiden ja avaruuden vektoreiden perustehtäviä
• osaa funktioiden peruskäsitteet ja tunnistaa erilaisten funktioiden tyypilliset ominaisuudet
• tunnistaa erityyppisten funktioiden kuvaajia
• tuntee sinikäyrän parametrien merkityksen
• osaa käyttää sekä soveltaa aihepiirien asioita tekniikan ongelmissa
• osaa laatia tekniikan ongelmista matemaattisen mallin ja osaa soveltaa sitä ongelman ratkaisussa
• kykenee esittämään ja perustelemaan loogisesti valitut ratkaisut
• osaa arvioida tekemiensä ratkaisujen järkevyyttä ja oikeellisuutta
Arviointikriteerit, kiitettävä (5)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja hän osaa soveltaa niitä vaativampiin ongelmiin. Opiskelijalla on taito esittää ja perustella loogisesti valitut ratkaisut. Ratkaisut esitetään selkeästi ja matemaattisia käsitteitä käytetään täsmällisesti. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Ilmoittautumisaika
02.07.2024 - 04.10.2024
Ajoitus
30.09.2024 - 20.12.2024
Laajuus
5 op
Toteutustapa
Lähiopetus
Yksikkö
TAMK Matematiikka ja fysiikka
Toimipiste
TAMK Pääkampus
Opetuskielet
- Suomi
Koulutus
- Autotekniikan tutkinto-ohjelma
Opettaja
- Nikolai Marjoma
Vastuuhenkilö
Juho Tiili
Ryhmät
-
24AUTOAAutotekniikka 2024
Tavoitteet (OJ)
Tällä opintojaksolla opit perusteet tekniikan taustalla olevasta matematiikasta, aihepiirinä geometria, vektorit ja funktiot
Opiskelija:
• tunnistat aihepiireihin liittyvät matemaattiset merkinnät ja osat käyttää niistä keskeisimpiä
• osaat vinokulmaisen kolmion ratkaisemisen ja osaat laskea erilaisten tasokuvioiden osia ja pinta-aloja
• tunnet taso- ja avaruuden vektoreiden laskutoimitukset
• osaat ratkaista tasovektoreiden ja avaruuden vektoreiden perustehtäviä
• osaat funktioiden peruskäsitteet ja tunnistat erilaisten funktioiden tyypilliset ominaisuudet
• tunnistat erityyppisten funktioiden kuvaajia
• tunnet sinikäyrän parametrien merkityksen
• osaat käyttää sekä soveltaa aihepiirien asioita tekniikan ongelmissa
• osaat laatia tekniikan ongelmista matemaattisen mallin ja osaat soveltaa sitä ongelman ratkaisussa
• kykenet esittämään ja perustelemaan loogisesti valitut ratkaisut
• osaat arvioida tekemiensä ratkaisujen järkevyyttä ja oikeellisuutta
Sisältö (OJ)
• suorakulmainen kolmio, kulma, kulmayksiköt
• kolmion ja monikulmioiden alat
• trigonometriset funktiot yleisesti
• vinokulmainen kolmio (sini- ja kosinilause)
•vektoreiden summa, erotus, luvulla kertominen
• tason vektorin koordinaatti- ja napakoordinaattiesitys
• avaruuden vektorit
• vektoreiden pistetulo ja ristitulo (3D)
• funktio ja siihen liittyviä käsitteitä
• 1.asteen polynomifunktio, suora (yhtälön muodostaminen kuvaajasta), lineaarinen riippuvuus
• 2.asteen polynomifunktio, paraabeli
• suoraan ja kääntäen verrannollisuus, paloittain määritelty funktio
• sinikäyrä
Arviointikriteerit, tyydyttävä (1-2) (OJ)
Opiskelija:
• tunnistaa aihepiireihin liittyvät matemaattiset merkinnät ja osaa käyttää niistä joitain
• osaa vinokulmaisen kolmion ratkaisemisen ja osaa laskea erilaisten tasokuvioiden osia ja pinta-aloja
• tuntee taso- ja avaruuden vektoreiden laskutoimituksia
• osaa ratkaista esitettyjen esimerkkien kaltaisia vektoritehtäviä
• tunnistaa funktioiden peruskäsitteitä ja erilaisten funktioiden ominaisuuksia
• valittujen ratkaisujen esitykset ja perustelut saattavat olla puutteellisia
• tehtyjen ratkaisujen järkevyyden ja oikeellisuuden arvioinnissa saattaa olla puutteita
Arviointikriteerit, hyvä (3-4) (OJ)
Opiskelija:
• tunnistaa aihepiireihin liittyvät matemaattiset merkinnät ja osaa käyttää niistä keskeisimpiä
• osaa vinokulmaisen kolmion ratkaisemisen ja osaa laskea erilaisten tasokuvioiden osia ja pinta-aloja
• tuntee taso- ja avaruuden vektoreiden laskutoimitukset
• osaa ratkaista tasovektoreiden ja avaruuden vektoreiden perustehtäviä
• osaa funktioiden peruskäsitteet ja tunnistaa erilaisten funktioiden tyypilliset ominaisuudet
• tunnistaa erityyppisten funktioiden kuvaajia
• tuntee sinikäyrän parametrien merkityksen
• osaa käyttää sekä soveltaa aihepiirien asioita tekniikan ongelmissa
• osaa laatia tekniikan ongelmista matemaattisen mallin ja osaa soveltaa sitä ongelman ratkaisussa
• kykenee esittämään ja perustelemaan loogisesti valitut ratkaisut
• osaa arvioida tekemiensä ratkaisujen järkevyyttä ja oikeellisuutta
Arviointikriteerit, kiitettävä (5) (OJ)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja hän osaa soveltaa niitä vaativampiin ongelmiin. Opiskelijalla on taito esittää ja perustella loogisesti valitut ratkaisut. Ratkaisut esitetään selkeästi ja matemaattisia käsitteitä käytetään täsmällisesti. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Aika ja paikka
Kuntokatu 3
Lukujärjestyksen mukaan
Tenttien ja uusintatenttien ajankohdat
Tentti sovittuna aikana.
Arviointimenetelmät ja arvioinnin perusteet
3 Välikoetta (10+10+10)p=30p
Läpipääsyraja 10/30p
Tunti/kotitehtävillä voi saada kokeeseen lisäpisteitä seuraavasti:
>40% = 1p
>50% = 2p
>60% = 3p
>80% = 4p
>90% = 5p
Uusintatentti koko koealueesta, jossa maksimipistemäärä on 30p.
Arviointiasteikko
0-5
Opiskelumuodot ja opetusmenetelmät
Lähiopetus
Aktivoiva lähiopetus
Itsenäinen opiskelu
Ryhmässä opiskelu
Välikokeet / Loppukoe
Oppimateriaalit
Opettajan materiaali
Moodle-materiaali
Tekniikan kaavasto, Tammertekniikka
Ti-nspire laskin
Opiskelijan ajankäyttö ja kuormitus
4op n. 108h
Lähiopetusta n. 34h
Itsenäistä työskentelyä n. 68h
Tentit n. 6h
Sisällön jaksotus
Jaksotus löytyy moodlesta.
Toteutuksen valinnaiset suoritustavat
Ei ole.
Harjoittelu- ja työelämäyhteistyö
Ei ole.
Kansainvälisyys
Ei ole.
Ilmoittautumisaika
02.07.2024 - 04.10.2024
Ajoitus
30.09.2024 - 20.12.2024
Laajuus
5 op
Toteutustapa
Lähiopetus
Yksikkö
TAMK Matematiikka ja fysiikka
Toimipiste
TAMK Pääkampus
Opetuskielet
- Suomi
Koulutus
- Autotekniikan tutkinto-ohjelma
Opettaja
- Nikolai Marjoma
Vastuuhenkilö
Juho Tiili
Ryhmät
-
24AUTOBAutotekniikka 2024
Tavoitteet (OJ)
Tällä opintojaksolla opit perusteet tekniikan taustalla olevasta matematiikasta, aihepiirinä geometria, vektorit ja funktiot
Opiskelija:
• tunnistat aihepiireihin liittyvät matemaattiset merkinnät ja osat käyttää niistä keskeisimpiä
• osaat vinokulmaisen kolmion ratkaisemisen ja osaat laskea erilaisten tasokuvioiden osia ja pinta-aloja
• tunnet taso- ja avaruuden vektoreiden laskutoimitukset
• osaat ratkaista tasovektoreiden ja avaruuden vektoreiden perustehtäviä
• osaat funktioiden peruskäsitteet ja tunnistat erilaisten funktioiden tyypilliset ominaisuudet
• tunnistat erityyppisten funktioiden kuvaajia
• tunnet sinikäyrän parametrien merkityksen
• osaat käyttää sekä soveltaa aihepiirien asioita tekniikan ongelmissa
• osaat laatia tekniikan ongelmista matemaattisen mallin ja osaat soveltaa sitä ongelman ratkaisussa
• kykenet esittämään ja perustelemaan loogisesti valitut ratkaisut
• osaat arvioida tekemiensä ratkaisujen järkevyyttä ja oikeellisuutta
Sisältö (OJ)
• suorakulmainen kolmio, kulma, kulmayksiköt
• kolmion ja monikulmioiden alat
• trigonometriset funktiot yleisesti
• vinokulmainen kolmio (sini- ja kosinilause)
•vektoreiden summa, erotus, luvulla kertominen
• tason vektorin koordinaatti- ja napakoordinaattiesitys
• avaruuden vektorit
• vektoreiden pistetulo ja ristitulo (3D)
• funktio ja siihen liittyviä käsitteitä
• 1.asteen polynomifunktio, suora (yhtälön muodostaminen kuvaajasta), lineaarinen riippuvuus
• 2.asteen polynomifunktio, paraabeli
• suoraan ja kääntäen verrannollisuus, paloittain määritelty funktio
• sinikäyrä
Arviointikriteerit, tyydyttävä (1-2) (OJ)
Opiskelija:
• tunnistaa aihepiireihin liittyvät matemaattiset merkinnät ja osaa käyttää niistä joitain
• osaa vinokulmaisen kolmion ratkaisemisen ja osaa laskea erilaisten tasokuvioiden osia ja pinta-aloja
• tuntee taso- ja avaruuden vektoreiden laskutoimituksia
• osaa ratkaista esitettyjen esimerkkien kaltaisia vektoritehtäviä
• tunnistaa funktioiden peruskäsitteitä ja erilaisten funktioiden ominaisuuksia
• valittujen ratkaisujen esitykset ja perustelut saattavat olla puutteellisia
• tehtyjen ratkaisujen järkevyyden ja oikeellisuuden arvioinnissa saattaa olla puutteita
Arviointikriteerit, hyvä (3-4) (OJ)
Opiskelija:
• tunnistaa aihepiireihin liittyvät matemaattiset merkinnät ja osaa käyttää niistä keskeisimpiä
• osaa vinokulmaisen kolmion ratkaisemisen ja osaa laskea erilaisten tasokuvioiden osia ja pinta-aloja
• tuntee taso- ja avaruuden vektoreiden laskutoimitukset
• osaa ratkaista tasovektoreiden ja avaruuden vektoreiden perustehtäviä
• osaa funktioiden peruskäsitteet ja tunnistaa erilaisten funktioiden tyypilliset ominaisuudet
• tunnistaa erityyppisten funktioiden kuvaajia
• tuntee sinikäyrän parametrien merkityksen
• osaa käyttää sekä soveltaa aihepiirien asioita tekniikan ongelmissa
• osaa laatia tekniikan ongelmista matemaattisen mallin ja osaa soveltaa sitä ongelman ratkaisussa
• kykenee esittämään ja perustelemaan loogisesti valitut ratkaisut
• osaa arvioida tekemiensä ratkaisujen järkevyyttä ja oikeellisuutta
Arviointikriteerit, kiitettävä (5) (OJ)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja hän osaa soveltaa niitä vaativampiin ongelmiin. Opiskelijalla on taito esittää ja perustella loogisesti valitut ratkaisut. Ratkaisut esitetään selkeästi ja matemaattisia käsitteitä käytetään täsmällisesti. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Aika ja paikka
Kuntokatu 3
Lukujärjestyksen mukaan
Tenttien ja uusintatenttien ajankohdat
Tentti sovittuna aikana.
Arviointimenetelmät ja arvioinnin perusteet
3 Välikoetta (10+10+10)p=30p
Läpipääsyraja 10/30p
Tunti/kotitehtävillä voi saada kokeeseen lisäpisteitä seuraavasti:
>40% = 1p
>50% = 2p
>60% = 3p
>80% = 4p
>90% = 5p
Uusintatentti koko koealueesta, jossa maksimipistemäärä on 30p.
Arviointiasteikko
0-5
Opiskelumuodot ja opetusmenetelmät
Lähiopetus
Aktivoiva lähiopetus
Itsenäinen opiskelu
Ryhmässä opiskelu
Välikokeet / Loppukoe
Oppimateriaalit
Opettajan materiaali
Moodle-materiaali
Tekniikan kaavasto, Tammertekniikka
Ti-nspire laskin
Opiskelijan ajankäyttö ja kuormitus
4op n. 108h
Lähiopetusta n. 34h
Itsenäistä työskentelyä n. 68h
Tentit n. 6h
Sisällön jaksotus
Jaksotus löytyy moodlesta.
Toteutuksen valinnaiset suoritustavat
Ei ole.
Harjoittelu- ja työelämäyhteistyö
Ei ole.
Kansainvälisyys
Ei ole.