Data Analysis and VisualizationLaajuus (7 op)
Tunnus: 5G00FT11
Laajuus
7 op
Osaamistavoitteet
The student understands basic concepts of Statistics and Classical Data Analysis. The student can collect and preprocess data for analysis and visualization. The student is able make appropriate data analyses and visualizations for the problem. The student can evaluate both the quality and the applicability of the results.
Sisältö
Course content is:
- Data collection and Data Preprocessing
- Visual analytics process
- Basic methods of Statistics and Classical Data Analysis
- Data analysis with Analytics Tools and Python
- Visualization models
- Critical evaluation of results
Arviointikriteerit, tyydyttävä (1-2)
Student can sufficiently implement data collection and data preprocessing for a given task. Student knows how to implement visual analytics processes. Student knows some basic methods of statistics and classical data analysis. The student can solve some given data analysis problems with analytics tools or python. Student can use given visualization models. Student understands the meaning of the results.
Arviointikriteerit, hyvä (3-4)
Student can implement data collection and data preprocessing for a given task. Student can implement visual analytics processes. Student knows and understands basic methods of statistics and classical data analysis. The student can solve given data analysis problems with analytics tools and python. Student knows and can exploit given visualization models. Student can evaluate the meaning of the results.
Arviointikriteerit, kiitettävä (5)
Student can implement data collection and data preprocessing with the appropriate methods. Student can implement various visual analytics processes. Student knows and understands in depth basic methods of statistics and classical data analysis. The student can solve versatile data analysis problems with analytics tools and python. Student knows and can exploit visualization models as appropriate. Student can critically evaluate and interpret the meaning of the results.
Lisätiedot
Includes content of previous Mathematics 3 course. The course eliminates duplication observed in courses.
Ilmoittautumisaika
23.11.2023 - 07.01.2024
Ajoitus
12.01.2024 - 05.05.2024
Laajuus
7 op
Toteutustapa
Lähiopetus
Yksikkö
Software Engineering
Toimipiste
TAMK Pääkampus
Opetuskielet
- Englanti
Paikat
0 - 42
Koulutus
- Bachelor's Degree Programme in Software Engineering
Opettaja
- Ossi Nykänen
Vastuuhenkilö
Ossi Nykänen
Ryhmät
-
22I260EADegree Programme in Software Engineering
-
22I260EBDegree Programme in Software Engineering
Tavoitteet (OJ)
The student understands basic concepts of Statistics and Classical Data Analysis. The student can collect and preprocess data for analysis and visualization. The student is able make appropriate data analyses and visualizations for the problem. The student can evaluate both the quality and the applicability of the results.
Sisältö (OJ)
Course content is:
- Data collection and Data Preprocessing
- Visual analytics process
- Basic methods of Statistics and Classical Data Analysis
- Data analysis with Analytics Tools and Python
- Visualization models
- Critical evaluation of results
Lisätiedot (OJ)
Includes content of previous Mathematics 3 course. The course eliminates duplication observed in courses.
Arviointikriteerit, tyydyttävä (1-2) (OJ)
Student can sufficiently implement data collection and data preprocessing for a given task. Student knows how to implement visual analytics processes. Student knows some basic methods of statistics and classical data analysis. The student can solve some given data analysis problems with analytics tools or python. Student can use given visualization models. Student understands the meaning of the results.
Arviointikriteerit, hyvä (3-4) (OJ)
Student can implement data collection and data preprocessing for a given task. Student can implement visual analytics processes. Student knows and understands basic methods of statistics and classical data analysis. The student can solve given data analysis problems with analytics tools and python. Student knows and can exploit given visualization models. Student can evaluate the meaning of the results.
Arviointikriteerit, kiitettävä (5) (OJ)
Student can implement data collection and data preprocessing with the appropriate methods. Student can implement various visual analytics processes. Student knows and understands in depth basic methods of statistics and classical data analysis. The student can solve versatile data analysis problems with analytics tools and python. Student knows and can exploit visualization models as appropriate. Student can critically evaluate and interpret the meaning of the results.
Arviointimenetelmät ja arvioinnin perusteet
Weekly assignments and project work presentation.
Arviointiasteikko
0-5
Ilmoittautumisaika
15.12.2022 - 08.01.2023
Ajoitus
11.01.2023 - 07.05.2023
Laajuus
7 op
Toteutustapa
Lähiopetus
Yksikkö
Tietotekniikka
Toimipiste
TAMK Pääkampus
Opetuskielet
- Englanti
Paikat
0 - 45
Koulutus
- Bachelor's Degree Programme in Software Engineering
Opettaja
- Ossi Nykänen
Vastuuhenkilö
Ossi Nykänen
Ryhmät
-
21I260EADegree Programme in Software Engineering
Tavoitteet (OJ)
The student understands basic concepts of Statistics and Classical Data Analysis. The student can collect and preprocess data for analysis and visualization. The student is able make appropriate data analyses and visualizations for the problem. The student can evaluate both the quality and the applicability of the results.
Sisältö (OJ)
Course content is:
- Data collection and Data Preprocessing
- Visual analytics process
- Basic methods of Statistics and Classical Data Analysis
- Data analysis with Analytics Tools and Python
- Visualization models
- Critical evaluation of results
Lisätiedot (OJ)
Includes content of previous Mathematics 3 course. The course eliminates duplication observed in courses.
Arviointikriteerit, tyydyttävä (1-2) (OJ)
Student can sufficiently implement data collection and data preprocessing for a given task. Student knows how to implement visual analytics processes. Student knows some basic methods of statistics and classical data analysis. The student can solve some given data analysis problems with analytics tools or python. Student can use given visualization models. Student understands the meaning of the results.
Arviointikriteerit, hyvä (3-4) (OJ)
Student can implement data collection and data preprocessing for a given task. Student can implement visual analytics processes. Student knows and understands basic methods of statistics and classical data analysis. The student can solve given data analysis problems with analytics tools and python. Student knows and can exploit given visualization models. Student can evaluate the meaning of the results.
Arviointikriteerit, kiitettävä (5) (OJ)
Student can implement data collection and data preprocessing with the appropriate methods. Student can implement various visual analytics processes. Student knows and understands in depth basic methods of statistics and classical data analysis. The student can solve versatile data analysis problems with analytics tools and python. Student knows and can exploit visualization models as appropriate. Student can critically evaluate and interpret the meaning of the results.
Arviointiasteikko
0-5
Ilmoittautumisaika
15.12.2022 - 08.01.2023
Ajoitus
01.01.2023 - 07.05.2023
Laajuus
7 op
Toteutustapa
Lähiopetus
Yksikkö
Tietotekniikka
Toimipiste
TAMK Pääkampus
Opetuskielet
- Englanti
Koulutus
- Bachelor's Degree Programme in Software Engineering
Opettaja
- Ossi Nykänen
Vastuuhenkilö
Ossi Nykänen
Ryhmät
-
21I260EBDegree Programme in Software Engineering
Tavoitteet (OJ)
The student understands basic concepts of Statistics and Classical Data Analysis. The student can collect and preprocess data for analysis and visualization. The student is able make appropriate data analyses and visualizations for the problem. The student can evaluate both the quality and the applicability of the results.
Sisältö (OJ)
Course content is:
- Data collection and Data Preprocessing
- Visual analytics process
- Basic methods of Statistics and Classical Data Analysis
- Data analysis with Analytics Tools and Python
- Visualization models
- Critical evaluation of results
Lisätiedot (OJ)
Includes content of previous Mathematics 3 course. The course eliminates duplication observed in courses.
Arviointikriteerit, tyydyttävä (1-2) (OJ)
Student can sufficiently implement data collection and data preprocessing for a given task. Student knows how to implement visual analytics processes. Student knows some basic methods of statistics and classical data analysis. The student can solve some given data analysis problems with analytics tools or python. Student can use given visualization models. Student understands the meaning of the results.
Arviointikriteerit, hyvä (3-4) (OJ)
Student can implement data collection and data preprocessing for a given task. Student can implement visual analytics processes. Student knows and understands basic methods of statistics and classical data analysis. The student can solve given data analysis problems with analytics tools and python. Student knows and can exploit given visualization models. Student can evaluate the meaning of the results.
Arviointikriteerit, kiitettävä (5) (OJ)
Student can implement data collection and data preprocessing with the appropriate methods. Student can implement various visual analytics processes. Student knows and understands in depth basic methods of statistics and classical data analysis. The student can solve versatile data analysis problems with analytics tools and python. Student knows and can exploit visualization models as appropriate. Student can critically evaluate and interpret the meaning of the results.
Arviointiasteikko
0-5
Ilmoittautumisaika
15.11.2021 - 09.01.2022
Ajoitus
14.01.2022 - 29.04.2022
Laajuus
7 op
Toteutustapa
Lähiopetus
Yksikkö
Tietotekniikka
Toimipiste
TAMK Pääkampus
Opetuskielet
- Englanti
Paikat
0 - 62
Koulutus
- Bachelor's Degree Programme in Software Engineering
Opettaja
- Ossi Nykänen
Vastuuhenkilö
Ossi Nykänen
Ryhmät
-
20I260EDegree Programme in Software Engineering
Tavoitteet (OJ)
The student understands basic concepts of Statistics and Classical Data Analysis. The student can collect and preprocess data for analysis and visualization. The student is able make appropriate data analyses and visualizations for the problem. The student can evaluate both the quality and the applicability of the results.
Sisältö (OJ)
Course content is:
- Data collection and Data Preprocessing
- Visual analytics process
- Basic methods of Statistics and Classical Data Analysis
- Data analysis with Analytics Tools and Python
- Visualization models
- Critical evaluation of results
Lisätiedot (OJ)
Includes content of previous Mathematics 3 course. The course eliminates duplication observed in courses.
Arviointikriteerit, tyydyttävä (1-2) (OJ)
Student can sufficiently implement data collection and data preprocessing for a given task. Student knows how to implement visual analytics processes. Student knows some basic methods of statistics and classical data analysis. The student can solve some given data analysis problems with analytics tools or python. Student can use given visualization models. Student understands the meaning of the results.
Arviointikriteerit, hyvä (3-4) (OJ)
Student can implement data collection and data preprocessing for a given task. Student can implement visual analytics processes. Student knows and understands basic methods of statistics and classical data analysis. The student can solve given data analysis problems with analytics tools and python. Student knows and can exploit given visualization models. Student can evaluate the meaning of the results.
Arviointikriteerit, kiitettävä (5) (OJ)
Student can implement data collection and data preprocessing with the appropriate methods. Student can implement various visual analytics processes. Student knows and understands in depth basic methods of statistics and classical data analysis. The student can solve versatile data analysis problems with analytics tools and python. Student knows and can exploit visualization models as appropriate. Student can critically evaluate and interpret the meaning of the results.
Arviointiasteikko
0-5