Siirry suoraan sisältöön

Tekoäly sosiaali- ja terveydenhuollossaLaajuus (5 op)

Opintojakson tunnus: 7Y00GE98

Opintojakson perustiedot


Laajuus
5 op
Opetuskieli
suomi
Vastuuhenkilö
Tony Torp

Osaamistavoitteet

Opintojaksolla opiskelijat perehtyvät tekoälyyn ja koneoppimiseen erityisesti terveysalan kontekstissa. Käsitellen edistyneitä algoritmeja ja ohjelmoinnin periaatteita opiskelijat arvioivat ja kehittävät tekoälyn sovelluksia, ja soveltavat teoreettista ymmärrystään ja osaamistaan vastaamaan nykyaikaisen terveydenhuollon haasteisiin ja innovaatioihin tekoälyn ja koneoppimisen alueella.

Opintojakson suoritettuaan opiskelija
- tietää tekoälyn ja koneoppimisen keskeiset periaatteet, termit ja käsitteet
- tietää koneoppimisen ja tekoälyn luomisen prosessin
- tietää tekoälyn keskeiset sovelluskohteet terveysalalla

Sisältö

Algoritmin käsite, ohjelmoinnin perusperiaatteet
Tekoälyn ja koneoppimisen periaatteet, termit ja käsitteet
Tekoälyn ja koneoppimisen mallin luominen ja testaaminen sekä laadun arviointi
Tekoälyn ja koneoppimisen keskeiset sovelluskohteet terveysalalla

Arviointikriteerit, tyydyttävä (1-2)

Opiskelija
- tuntee tekoälyn keskeiset periaatteet, termit ja käsitteet
- tuntee tekoälyn luomisen prosessit
- tuntee tekoälyn keskeiset sovelluskohteet sekä niiden vaikutukset terveysalalla

Arviointikriteerit, hyvä (3-4)

Opiskelija
- tuntee tekoälyn keskeiset periaatteet, termit ja käsitteet
- tuntee tekoälyn luomisen prosessit
- tuntee tekoälyn keskeiset sovelluskohteet sekä niiden vaikutukset terveysalalla
- osaa luoda datan pohjalta koneoppimisen mallin sekä testata sekä arvioida mallia
- osaa analysoida tekoälyn käyttökohteita sekä käyttökelpoisuutta terveydenhuollon prosesseissa

Arviointikriteerit, kiitettävä (5)

Opiskelija
- tuntee tekoälyn keskeiset periaatteet, termit ja käsitteet
- tuntee tekoälyn luomisen prosessit
- tuntee tekoälyn keskeiset sovelluskohteet sekä niiden vaikutukset terveysalalla
- osaa luoda datan pohjalta koneoppimisen mallin sekä testata sekä arvioida mallia
- osaa analysoida tekoälyn käyttökohteita sekä käyttökelpoisuutta terveydenhuollon prosesseissa
- osaa luoda tekoälyn mallin terveydenhuollon prosessissa sekä kriittisesti analysoida tekoälyn mallin laatua ja soveltuvuutta käyttökohteeseen
- tunnistaa erilaisten algoritmien erot koneoppimisen mallin luomisessa ja osaa valita käyttökohteeseen perustellusti soveltuvan algoritmin

Siirry alkuun