Integral Calculus (3 cr)
Code: 5N00EG75-3087
General information
- Enrolment period
- 04.02.2023 - 12.03.2023
- Registration for the implementation has ended.
- Timing
- 06.03.2023 - 31.05.2023
- Implementation has ended.
- Credits
- 3 cr
- Mode of delivery
- Contact learning
- Unit
- TAMK Mathematics and Physics
- Campus
- TAMK Main Campus
- Teaching languages
- Finnish
- Degree programmes
- Degree Programme in Vehicle Engineering
Objectives (course unit)
Student is able to
- understand basic terminology of integral calculus
- determine integral graphically, numerically and symbolically
- calculate areas using definite integral
- solve basic differential equations and use differential equations for modeling physical phenomena
Content (course unit)
Integral Function, Definite Integral, Graphical Integration, Numerical Integration, Symbolic Integration, Calculation of Areas and Volumes with Integral, Differential Equations and Applications.
Prerequisites (course unit)
Orientation for Engineering Mathematics, Functions and Matrices and Differential Calculus or similar skills
Assessment criteria, satisfactory (1-2) (course unit)
Student understands the basic concepts of integration and is able to solve simple applications that are similar to the model problems solved during the course. Student is also familiar to solution methods of simple differential equations. Justification of solutions and using mathematical concepts may still be somewhat vague. Student takes care of his/her own studies and can cope with exercises with some help from the group.
Assessment criteria, good (3-4) (course unit)
In addition, student understands how to apply definite integrals to solve technical problems. Student is also able to explain the methods of her/his solutions. Mathematical notations and concepts are mainly used correctly. Student is able to solve the given exercises independently and also helps other students in the group.
Assessment criteria, excellent (5) (course unit)
In addition, student has an overall understanding of course topics. He/she can solve more demanding engineering problems and has the ability to present and justify the chosen methods of solution. Mathematical notations and concepts are used precisely. Student is motivated and committed to help the group to manage the course.
Location and time
Oppitunnit pääsääntöisesti perjantaisin klo 11-14 huoneessa B2-37
Exam schedules
Toteutuksen aikana järjestetään kolme koetta. Alustavat ajat kokeille ovat vko 13, vko 15 ja vko Kokeet pyritään pitämään lukujärjestyksen tuntiaikana.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Assessment methods and criteria
Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan kokeilla, harjoitustehtävillä / -töillä sekä aktiivisella osallistumisella opetukseen. Opintojaksoon saattaa sisältyä myös ryhmässä tehtäviä osioita. Kokeiden arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys.
Pisteitä on jaossa seuraavasti
Tuntiaktiivisuus: max. 15 p
Harjoitustehtävät /-työt: max. 15 p
Kokeet: max. 30 p
Mikäli eri kokeissa on samaan aihealueeseen liittyviä osioita, niistä paras (ja vain paras) huomioidaan kokonaispistemäärässä.
Pisterajat (prosentteina maksimista)
<25 %: Ei arvosanaa
25-40%: 0
40%: 1
50%: 2
65%: 3
80%: 4
90%: 5
Assessment scale
0-5
Teaching methods
Lähiopetus (luennot), itsenäinen opiskelu, tuntiharjoitukset ja kotitehtävät, mahdolliset STACK-tehtävät, tentti.
Learning materials
Opettajan jakama materiaali
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS-laskin.
Student workload
Opiskelijan keskimääräinen työmäärä on 80 h, joka voi koostua muun muassa:
- lähiopetuksesta, jossa opettaja mukana
- ryhmätöistä (opettaja ei ole mukana)
- itsenäisestä työskentelystä (mm. kotitehtävät, STACK-tehtävät, opetusvideot)
- kokeista
Opettajan pitämiä lähitunteja on n. 20 h.
Content scheduling
- määrätty integraali
- graafinen tulkinta
- numeerinen integrointi
- integraalifunktio ja integrointikaavoja
- analyysin peruslause (määrätyn integraalin ja integraalifunktion yhteys)
- pienten differentiaalien menetelmä ja sovellustehtäviä
- muuttujien erottaminen ja sovelluksia
- differentiaaliyhtälöiden perusteet
Completion alternatives
Neuvoteltava erikseen opettajan kanssa. Opettaja ei ole velvollinen antamaan valinnaista suoritustapaa.
Further information
Opetus alkaa Moodlessa ilmoitettavan aikataulun mukaisesti viikolla 10.
Opettajalta saa tarvittaessa Moodle-avaimen (kurssille hyväksytyt henkilöt).