Data-analysis, Data Visualization and Artificial Intelligence (5 cr)
Code: NY00EK76-3002
General information
- Enrolment period
- 15.05.2020 - 26.08.2020
- Registration for the implementation has ended.
- Timing
- 07.09.2020 - 07.10.2020
- Implementation has ended.
- Credits
- 5 cr
- Local portion
- 5 cr
- Mode of delivery
- Contact learning
- Unit
- MD in Social Services
- Campus
- TAMK Main Campus
- Teaching languages
- Finnish
- Seats
- 0 - 40
- Degree programmes
- Master's Degree Programme in Social Services
Objectives (course unit)
The student knows the basics of data analysis and the most important methods. The student knows how to process, analyze and visualize data. The student knows the basics of artificial intelligence, the most important concepts and is able to interpret the results and know the limitations and possibilities of the methods.
Content (course unit)
The basics of data analysis and the main methods. Processing, analyzing and visualizing data. Basics of Artificial Intelligence, key concepts and methodology evaluation.
Assessment criteria, satisfactory (1-2) (course unit)
The student is able to process data, analyze and make visualizations. The student knows the basics of artificial intelligence and the most important concepts.
Assessment criteria, good (3-4) (course unit)
The student is able to process data, analyze and make visualizations. The student knows the basics of artificial intelligence, the most important concepts and knows the limitations and possibilities of methods.
Assessment criteria, excellent (5) (course unit)
The student is able to handle data in a versatile way, analyze and visualize. Students are familiar with the basics of artificial intelligence, the most important concepts and are able to interpret the results and know the limitations and possibilities of the methods.
Exam schedules
Ei tenttiä
Evaluation methods and criteria
Yhteispisteet 100, joka jakautuu puoliksi data-analyysin ja tekoälyn kesken.
Seuraavassa pisteet ja arvosana:
0 0
30 1
45 2
60 3
75 4
90 5
Assessment scale
0-5
Teaching methods
Etäopetusta teamsissa, harjoituksia ja oppimistehtäviä
Learning materials
Materiaali moodlessa
Further information
Läsnäolo teamsissa toivottavaa, koska tehdään tehtäviä hands-on tyyppisesti.
Assessment criteria - fail (0) (Not in use, Look at the Assessment criteria above)
Oppimistehtäviä ei ole palautettu tai ne eivät vastaa arviointikriteerejä. Tarkemmin moodlessa.