Skip to main content

Technical Mathematics for Construction Engineers (4 cr)

Code: 5N00GL22-3005

General information


Enrolment period
01.12.2024 - 26.01.2025
Registration for the implementation has ended.
Timing
10.01.2025 - 31.05.2025
Implementation has ended.
Credits
4 cr
Mode of delivery
Contact learning
Unit
Construction Engineering
Campus
TAMK Main Campus
Teaching languages
Finnish
Degree programmes
Degree Programme in Construction Engineering
Teachers
Sara Nortunen
Person in charge
Sara Nortunen
Course
5N00GL22

Objectives (course unit)

In this course, you will learn the basics of the mathematics behind technology, the subject area being geometry, vectors and functions

Student:
• you recognize the mathematical notations related to the subject areas and can use the most central ones
Student:
• you recognize the mathematical notations related to the subject areas and can use the most central ones
• you know how to solve an oblique triangle and you know how to calculate the parts and areas of different plane patterns
• you know the concept of slope
• you know how to calculate the center of gravity of a level area and you know how to solve tasks related to uniformity and scale
• you know how to solve basic vector problems in the plane
• you know the basic concepts of functions and recognize the typical properties of different functions
• you recognize graphs of different types of functions
• you know how to use and apply the topics in technical problems
• you know how to create a mathematical model of technology problems and you know how to apply it in the solution of the problem
• you are able to present and justify logically chosen solutions

Content (course unit)

• right triangle, angle, angle units
• areas of triangles and polygons
• trigonometric functions in general
• oblique triangle (sine and cosine theorem)
• center of gravity, slope, uniformity and scale of the level area
• sum of vectors, difference, multiplication by a number
• plane vector coordinate and polar coordinate representation
• space vectors (brief mention)
• function and related concepts
• 1st degree polynomial function, straight line (creating an equation from the graph), linear dependence
• 2nd degree polynomial function, parabola
• directly and inversely proportional, a piecewise defined function

Assessment criteria, satisfactory (1-2) (course unit)

Student:
• recognizes the mathematical notations related to the subject areas and know how to use some of them
• knows how to solve an oblique triangle and can calculate the parts and areas of different plane patterns
• knows the calculations of plane vectors
• can solve vector problems like the examples presented
• recognize the basic concepts of functions and the characteristics of different functions
• the presentations and justifications of the chosen solutions may be incomplete
• there may be shortcomings in evaluating the reasonableness and correctness of the solutions made

Assessment criteria, good (3-4) (course unit)

Student:
• recognizes the mathematical notations related to the subject areas and know how to use the most important of them
• knows how to solve an oblique triangle and can calculate the parts and areas of different plane patterns
• knows the concept of slope
• can calculate the center of gravity of the level area and can solve tasks related to uniformity and scale
• can solve basic vector problems in the plane
• knows the basic concepts of functions and recognizes the typical properties of different functions
• recognize graphs of different types of functions
• knows how to use and apply the topics in technical problems
• can create a mathematical model of technology problems and can apply it in the solution of the problem
• is able to present and justify logically chosen solutions
• knows how to evaluate the reasonableness and correctness of the decisions he makes

Assessment criteria, excellent (5) (course unit)

In addition to the previous, the student has a comprehensive understanding of the subjects of the course and knows how to apply them to more demanding problems. The student has the ability to present and justify logically chosen solutions. Solutions are presented clearly and mathematical concepts are used precisely. The student is highly motivated and takes full responsibility for his own and the group's performance.

Location and time

Opetus lukujärjestyksen mukaisesti.

Exam schedules

Kurssi suoritetaan tentillä, joka pidetään xx.x.2025.

1. uusintatentti 14.5.2025 klo 16-19
2. uusintatentti 4.6.2025 klo 16-19

Uusinnat ja korotukset ovat vain ja ainoastaan tässä ilmoitettuna aikana, ei siis myöhemmin esimerkiksi seuraavana vuonna.
Uusintakokeeseen ja korotukseen ilmoittaudutaan Pakin kautta.
Uusintaan osallistuminen edellyttää arvosanaa 0.

Yleiseti kokeesta:
Sairastapauksissa vaaditaan lääkärintodistus.
Poissaolo kokeesta vastaa hylättyä suoritusta.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.

Assessment methods and criteria

Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan tentillä ja viikoittain tarkastettavilla harjoitustehtävillä.

Arvosteluun vaikuttavat kotitehtävät (maksimi 6 p) ja loppukoe (maksimi 34 p). Kokeen arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää osallistumista opintojakson työmuotoihin (vähintään 30 % kotitehtävistä tehtynä sekä osallistuminen kokeeseen). Arvosanan 1 saa noin 12 pisteellä kurssin eri arviointimuotojen yhteenlasketusta maksimipistemäärästä, kuitenkin siten, että loppukokeesta pitää saada vähintään 6 pistettä.

Uusinta- ja korotus:
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä- eikä aiemmat koepisteet. Siinä kurssiarvosana määräytyy pelkästään kokeen perustella ja läpipääsyyn vaaditaan 1/3 kokeen maksimipistemäärästä.

Arviointikriteeri - hylätty (0)
Opiskelija osallistuu säännöllisesti opetukseen ja sen työmuotoihin, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Mikäli edellä mainitut kriteerit eivät täyty, opiskelija poistetaan toteutukselta. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.

Mikäli opiskelija hyödyntää tekoälyä tehtävien ratkaisemisessa, niin ratkaisut pitää kuitenkin esittää toteutuksella opetettavin käsittein, merkinnöin ja menetelmin ja välivaiheet on osattava selittää.

Assessment scale

0-5

Teaching methods

Lähiopetus, etäopetus, itsenäinen opiskelu, tuntiharjoitukset ja kotitehtävät, videomateriaalit, kokeet

Learning materials

Opettajan Moodlessa jakama materiaali (pdf-materiaalit, videot, interaktiiviset STACK- tehtävät)

Kaavasto: Tekniikan kaavasto, Tammertekniikka tai MAOL

Laskinsuositus: symbolinen TI-nspire CX CAS/ TI-nspire CX II CAS -laskin. Tällä opintojaksolla keskitytään lähinnä "käsinlaskentaan", joten ihan peruslaskimella, josta löytyy sin, cos, tan ja neliöjuuri selviää. Opintojaksolla voi kuitenkin jo harjoitella myös tehokkaamman laskimen käyttöä. Symbolista laskinta tarvitaan seuraavalla matematiikan opintojaksolla.

Student workload

Opiskelijan keskimääräinen työmäärä on n. 108 h, joka koostuu:
- lähiopetuksesta, jossa opettaja mukana
- kotitehtävistä ja mahdollisista ryhmätöistä (opettaja ei ole mukana),
- itsenäisestä työskentelystä
- kokeista
Opettajan pitämiä lähitunteja on n. 30 h.

Content scheduling

Sisällön jaksotus on suuntaa antava. Osa opsissa mainituista kokonaisuuksista on tarkoitus suorittaa itsenäisenä opiskeluna ja/tai ryhmätöinä.

Opintojakson keskeinen sisältö:
- Suorakulmaisen ja vinokulmaisen kolmion ratkaiseminen ja erilaisten tasokuvioiden pinta-aloja
- Vektorilaskentaa tasossa
- Painopiste
- Funktioiden peruskäsitteet ja merkinnät.
- Polynomifunktiot (erityisesti suora ja paraabeli) ja verrannollisuudet

Opintojakson aihepiirejä sovelletaan erilaisissa tekniikan probleemoissa

Completion alternatives

Ei ole.

Practical training and working life cooperation

Ei ole.

International connections

Ei ole.

Go back to top of page