Skip to main content

Technical Mathematics for Mechanical Engineering (4 cr)

Code: 5N00GL23-3002

General information


Enrolment period
02.07.2024 - 31.08.2024
Registration for the implementation has ended.
Timing
30.09.2024 - 31.12.2024
Implementation has ended.
Credits
4 cr
Mode of delivery
Contact learning
Unit
TAMK Mathematics and Physics
Campus
TAMK Main Campus
Teaching languages
Finnish
Degree programmes
Degree Programme in Mechanical Engineering
Teachers
Kirsi-Maria Rinneheimo
Person in charge
Kirsi-Maria Rinneheimo
Tags
BLENDED
Course
5N00GL23

Objectives (course unit)

In this course, you will learn the basics of the mathematics behind technology, with topics such as geometry, vectors, and functions

Student:
• you recognize the mathematical notations related to the subject areas and can use the most central ones
• you know how to solve an oblique triangle and you know how to calculate the parts and areas of different plane patterns
• you know the calculations of plane and space vectors
• you can solve basic problems of plane vectors and space vectors
• you know the basic concepts of functions and recognize the typical properties of different functions
• you recognize graphs of different types of functions
• you know the meaning of the sine curve parameters
• you know how to use and apply the topics in technical problems
• you know how to create a mathematical model of technology problems and you know how to apply it in the solution of the problem
• you are able to present and justify logically chosen solutions
• you know how to evaluate the reasonableness and correctness of the solutions you make

Content (course unit)

• right triangle, angle, angle units
• areas of triangles and polygons
• trigonometric functions in general
• diagonal triangle (sine and cosine theorem)
• sum of vectors, difference, multiplication by a number
• plane vector coordinate and polar coordinate representation
• vectors in space
• dot product and cross product of vectors (3D)
• function and related concepts
• 1st-degree polynomial function, straight line (creating an equation from the graph), linear dependence
• 2nd degree polynomial function, parabola
• direct and inverse proportionality, piecewise defined function
• sine curve

Assessment criteria, satisfactory (1-2) (course unit)

Student:
• recognizes the mathematical notations related to the subject areas and know how to use some of them
• knows how to solve an oblique triangle and can calculate the parts and areas of different plane patterns
• knows the calculations of plane and space vectors
• can solve vector problems like the examples presented
• recognize the basic concepts of functions and the characteristics of different functions
• the presentations and justifications of the chosen solutions may be incomplete
• there may be shortcomings in evaluating the reasonableness and correctness of the solutions made

Assessment criteria, good (3-4) (course unit)

Student:
• recognizes the mathematical notations related to the subject areas and know how to use the most important of them
• knows how to solve an oblique triangle and can calculate the parts and areas of different plane patterns
• knows the calculations of plane and space vectors
• can solve basic problems of plane vectors and space vectors
• knows the basic concepts of functions and recognizes the typical properties of different functions
• recognize graphs of different types of functions
• knows the meaning of the parameters of the sine curve
• knows how to use and apply the topics in technical problems
• can create a mathematical model of technology problems and can apply it in the solution of the problem
• is able to present and justify logically chosen solutions
• knows how to evaluate the reasonableness and correctness of the decisions made

Assessment criteria, excellent (5) (course unit)

In addition to the previous, the student has a comprehensive understanding of the subjects of the course and knows how to apply them to more demanding problems. The student has the ability to present and justify logically chosen solutions. Solutions are presented clearly and mathematical concepts are used precisely. The student is highly motivated and takes full responsibility for his own and the group's performance.

Exam schedules

Opintojakso suoritetaan välikokeilla, joiden ajat varmistetaan kurssin aikana.

Alustavat ajat (näihin voi tulla muutoksia, joista tiedotetaan tunneilla ja sähköpostilla):

1. välikoe (aika ilmoitetaan kurssin aikana)
2. välikoe 12.12. (aika ja paikka näkyy lukujärjestyksessä)
Välikokeita ei voi uusia eikä korottaa.

Koko kurssin uusintakoe järjestetään seuraavasti:

1. uusintakoe 17.1.2025 13.00 - 16.00, Ilmoittautumisaika 17.12.2024 – 13.1.2025
2. uusintakoe/ korotus 7.2.2025 13.00 - 16.00, Ilmoittautumisaika 7.1.2025 – 3.2.2025

Uusinnat ja korotukset ovat vain ja ainoastaan tässä ilmoitettuna aikana, ei siis myöhemmin esimerkiksi seuraavana vuonna.
Uusintakokeeseen ja korotukseen ilmoittaudutaan Pakin kautta.
Uusintaan osallistuminen edellyttää arvosanaa 0.

Yleiseti kokeesta:
Sairastapauksissa vaaditaan lääkärintodistus.
Poissaolo kokeesta vastaa hylättyä suoritusta.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.

Assessment methods and criteria

Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan kokeella/kokeilla, nettitehtävillä ja viikoittain tarkastettavilla harjoitustehtävillä,

Arviointiin vaikuttavat nettitehtävät (7 p) , kotitehtävät (5 p) ja kokeet (36 p). Kokeiden arvioinnissa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää osallistumista opintojakson työmuotoihin (lähiopetus, nettitehtävien ja kotitehtävien teko sekä osallistuminen kokeisiin). Arvosanan 1 saa 14 pisteellä, kuitenkin siten, että pisteistä 7 p on tultava kokeella.

Opintojakson aiheiden opettelussa ja kertauksessa on sallittua hyödyntää tekoälyä. Tehtävien ratkaisut pitää kuitenkin esittää toteutuksella opetettavin käsittein, merkinnöin ja menetelmin ja ratkaisun periaatteet ja välivaiheet on osattava selittää.

Uusinta- ja korotus:
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä-, nettitehtävä- eikä aiemmat koepisteet. Siinä on kurssiarvosana määräytyy pelkästään kokeen perustella ja läpipääsyyn vaaditaan 1/3 kokeen maksimipistemäärästä.


Arviointikriteeri - hylätty (0)
Opiskelija osallistuu säännöllisesti opetukseen ja sen työmuotoihin, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Mikäli edellä mainitut kriteerit eivät täyty, niin opiskelija poistetaan toteutukselta. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.

Assessment scale

0-5

Teaching methods

Lähiopetus, itsenäinen opiskelu, tuntiharjoitukset ja kotitehtävät, videomateriaalit, nettitehtävät (STACK-tehtävät), välikokeet

Learning materials

Opettajan Moodlessa jakama materiaali (pdf-materiaalit, videot, interaktiiviset tehtävät)

Kaavasto: Tekniikan kaavasto, Tammertekniikka tai MAOL

Laskin: Opintojaksolla keskitytään "käsinlaskentaan", joten ihan peruslaskimella, josta löytyy sin, cos, tan ja neliöjuuri selviää. Opintojasolla voi kuitenkin harjoitella myös tehokkaamman laskimen tai matematiikkaohjelmiston käyttöä. Tamkissa suosituksena on symbolinen TI-nspire CX CAS/ TI-nspire CX II CAS -laskin. Tällaista laskinta hyödynnetään seuraavalla matematiikan opintojaksoilla.

Student workload

Opiskelijan keskimääräinen työmäärä on 108 h, joka koostuu:
- lähiopetuksesta, jossa opettaja mukana
- kotitehtävistä, nettitehtävistä ja mahdollisista ryhmätöistä (opettaja ei ole mukana),
- itsenäisestä työskentelystä
- kokeista
Opettajan pitämiä lähitunteja on n. 40 h.

Content scheduling

Sisällön jaksotus on suuntaa antava. Osa opsissa mainituista kokonaisuuksista on tarkoitus suorittaa itsenäisenä opiskeluna ja/tai ryhmätöinä.

Opintojakson keskeinen sisältö:
- Suorakulmaisen ja vinokulmaisen kolmion ratkaiseminen ja erilaisten tasokuvioiden pinta-aloja
- Vektorilaskentaa tasossa
- Avaruuden vektorit, pistetulo
- Funktioiden peruskäsitteet ja merkinnät.
- Polynomifunktiot (erityisesti suora ja paraabeli) ja verrannollisuudet

Opintojakson aihepiirejä sovelletaan erilaisissa tekniikan probleemoissa

Completion alternatives

AHOT

Practical training and working life cooperation

Ei ole.

International connections

Ei ole.

Further information

Opetus alkaa lukujärjestyksen mukaisesti.
Opintojaksoon tulee Moodle-toteutus. Toteutus ei näy automaattisesti, vaan se täytyy hakea kurssitunnuksella. Opettaja lähettää ilmoittautuneille ennen kurssin alkua Moodle-avaimen sähköpostilla.

Go back to top of page