Technical Mathematics for HVAC Engineers (4 cr)
Code: 5N00GN86-3001
General information
- Enrolment period
- 02.07.2024 - 10.09.2024
- Registration for the implementation has ended.
- Timing
- 09.09.2024 - 22.12.2024
- Implementation has ended.
- Credits
- 4 cr
- Mode of delivery
- Contact learning
- Unit
- TAMK Mathematics and Physics
- Campus
- TAMK Main Campus
- Teaching languages
- Finnish
- Degree programmes
- Degree Programme in Building Services Engineering, HVAC Systems
Objectives (course unit)
In this course, you will learn the basics of the mathematics behind technology, the subject area being geometry, vectors and functions
As a student, you
• recognize the mathematical notations related to the subject areas and know how to use the most important of them
• know how to solve a diagonal triangle
• can calculate the parts and surfaces of different plane patterns and the volumes of different pieces
• know how to solve basic tasks in vector calculus
• know the basic concepts of functions and recognize the typical properties of different functions
• recognize the graphs of different types of functions, you know how to use them and apply the topics in technical problems
• know how to create a mathematical model of technology problems and you know how to apply it in the solution of the problem
• are able to present and justify logically chosen solutions
• know how to evaluate the reasonableness and correctness of the solutions you make
Content (course unit)
• right triangle, angle, angle units
• areas of triangles and polygons
• trigonometric functions in general
• oblique triangle (sine and cosine theorem)
• circle theory, spatial geometry
• sum of vectors, difference, multiplication by a number
• plane vector coordinate and polar coordinate representation
• space vectors (brief mention)
• function and related concepts
• 1st degree polynomial function, straight line (creating an equation from the graph), linear dependence
• 2nd degree polynomial function, parabola
• directly and inversely proportional, a piecewise defined function
Assessment criteria, satisfactory (1-2) (course unit)
Student:
• recognizes the mathematical notations related to the subject areas and know how to use some of them
• knows how to solve right-angled and diagonal triangles
• can calculate the surface areas of different plane patterns and the volumes of pieces
• knows the calculations of plane vectors
• can solve vector problems like the examples presented
• recognize the basic concepts of functions and the characteristics of different functions
• the presentations and justifications of the chosen solutions may be incomplete
• there may be shortcomings in evaluating the reasonableness and correctness of the solutions made
Assessment criteria, good (3-4) (course unit)
Student:
• recognizes the mathematical notations related to the subject areas and know how to use the most important of them
• knows how to solve a diagonal triangle
• can calculate the parts and areas of different plane patterns and the volumes of different pieces
• can solve basic tasks in vector calculus
• knows the basic concepts of functions and recognizes the typical properties of different functions
• recognizes the graphs of different types of functions, knows how to use them and applies the topics in technical problems
• can create a mathematical model of technology problems and can apply it in the solution of the problem
• is able to present and justify logically chosen solutions
• knows how to evaluate the reasonableness and correctness of the decisions he makes
Assessment criteria, excellent (5) (course unit)
In addition to the previous one, the student has a comprehensive understanding of the subjects of the course and knows how to apply them to more demanding problems. The student has the ability to present and justify logically chosen solutions. Solutions are presented clearly and mathematical concepts are used precisely. The student is highly motivated and takes full responsibility for his own and the group's performance.
Location and time
Opetus lukujärjestyksen mukaisesti.
Exam schedules
Kurssi suoritetaan kolmella välikokeella
1. välikoe 30.9.
2. välikoe 6.11.
3. välikoe 18.12.
1. Uusintatentti 17.1.2025 klo 13-16
2. Uusintatentti 31.1.2025 klo 13-16
Assessment methods and criteria
Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan kahdella välikokeella ja viikoittain tarkastettavilla harjoitustehtävillä,
Arvosteluun vaikuttavat kotitehtävät (maksimi 9 p) ja välikokeet (maksimi 36 p). Kokeen arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää osallistumista opintojakson työmuotoihin (kotitehtävien teko sekä osallistuminen kokeeseen). Arvosanan 1 saa 14 pisteellä kurssin eri arviointimuotojen yhteenlasketusta maksimipistemäärästä, kuitenkin siten, että kokeista pitää saada vähintään yhteensä 7 pistettä.
Uusinta- ja korotus:
Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä- eikä aiemmat koepisteet. Siinä kurssiarvosana määräytyy pelkästään kokeen perustella ja läpipääsyyn vaaditaan 1/3 kokeen maksimipistemäärästä.
Mikäli opiskelija hyödyntää tekoälyä tehtävien ratkaisemisessa, niin ratkaisut pitää kuitenkin esittää toteutuksella opetettavin käsittein, merkinnöin ja menetelmin ja välivaiheet on osattava selittää.
Assessment scale
0-5
Teaching methods
Lähiopetus, itsenäinen opiskelu, tuntiharjoitukset ja kotitehtävät, opetusvideot, välikokeet.
Learning materials
Opintojakson oppimateriaalina on sähköisiä opetusmonisteita ja opetusvideoita, jotka opiskelija löytää Moodlesta.
Kaavasto: Tammertekniikan Tekniikan kaavasto tai MAOL
Laskin: Symbolinen laskin, esim. TI-Nspire.
Student workload
Opiskelijan keskimääräinen työmäärä on n. 108 h, joka koostuu:
- lähiopetuksesta, jossa opettaja mukana
- kotitehtävistä ja mahdollisista ryhmätöistä (opettaja ei ole mukana),
- itsenäisestä työskentelystä
- kokeista
Opettajan pitämiä lähitunteja on n. 50 h. Lisäksi opiskelijalla on mahdollisuus osallistua matematiikan tukipajaan maanantaisin klo 14-16.
Content scheduling
Jaksotus on suuntaa antava.
Tasogeometria
Tason vektorit
Funktiot
Practical training and working life cooperation
Ei ole.
International connections
Ei ole.