Skip to main content

Integral Calculus (3 cr)

Code: 5N00EG75-3068

General information


Enrolment period
01.12.2021 - 24.02.2022
Registration for the implementation has ended.
Timing
07.03.2022 - 30.04.2022
Implementation has ended.
Credits
3 cr
Local portion
3 cr
Mode of delivery
Contact learning
Unit
Building Services Engineering
Campus
TAMK Main Campus
Teaching languages
Finnish
Seats
1 - 45
Degree programmes
Degree Programme in Building Services Engineering, Electrical Systems
Teachers
Pia Ruokonen-Kaukolinna
Person in charge
Pia Ruokonen-Kaukolinna
Course
5N00EG75

Objectives (course unit)

Student is able to
- understand basic terminology of integral calculus
- determine integral graphically, numerically and symbolically
- calculate areas using definite integral
- solve basic differential equations and use differential equations for modeling physical phenomena

Content (course unit)

Integral Function, Definite Integral, Graphical Integration, Numerical Integration, Symbolic Integration, Calculation of Areas and Volumes with Integral, Differential Equations and Applications.

Prerequisites (course unit)

Orientation for Engineering Mathematics, Functions and Matrices and Differential Calculus or similar skills

Assessment criteria, satisfactory (1-2) (course unit)

Student understands the basic concepts of integration and is able to solve simple applications that are similar to the model problems solved during the course. Student is also familiar to solution methods of simple differential equations. Justification of solutions and using mathematical concepts may still be somewhat vague. Student takes care of his/her own studies and can cope with exercises with some help from the group.

Assessment criteria, good (3-4) (course unit)

In addition, student understands how to apply definite integrals to solve technical problems. Student is also able to explain the methods of her/his solutions. Mathematical notations and concepts are mainly used correctly. Student is able to solve the given exercises independently and also helps other students in the group.

Assessment criteria, excellent (5) (course unit)

In addition, student has an overall understanding of course topics. He/she can solve more demanding engineering problems and has the ability to present and justify the chosen methods of solution. Mathematical notations and concepts are used precisely. Student is motivated and committed to help the group to manage the course.

Exam schedules

Opintojakso suoritetaan kahdella välikokeella, joiden ajat ilmoitetaan kurssin aikana. Välikokeita ei voi uusia eikä korottaa.

1. välikoe 4.4.

Koko kurssin uusintakoe järjestetään seuraavasti:
Uusintakokeet:
1. uusintakoe 18.5.2022 klo 17-20 ( paikka tarkentuu myöhemmin)
2. uusintakoe/ korotus 8.6.2022 klo 17-20 (paikka tarkentuu myöhemmin)
Uusinnat ja korotukset ovat vain ja ainoastaan tässä ilmoitettuna aikana, ei siis myöhemmin esim. seuraavana vuonna.
Uusintakokeeseen ja korotukseen ilmoittaudutaan opettajan ilmoittamalla tavalla.
Uusintaan osallistuminen edellyttää arvosanaa 0.

Yleiseti kokeesta:
Sairastapauksissa vaaditaan lääkärintodistus.
Poissaolo kokeesta vastaa hylättyä suoritusta.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.

Evaluation methods and criteria

Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan välikokeilla, nettitehtävillä ja viikoittain tarkastettavilla harjoitustehtävillä,

Arvosteluun vaikuttavat nettitehtävät 15 %, kotitehtävät 10 % ja kokeet (välikokeet) 75 % . Kokeiden arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan, nettitehtävien ja kotitehtävien tekoa sekä välikokeisiin osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois. Arvosanan 1 saa pistemäärällä, joka on 30 % kurssin eri arviointimuotojen yhteenlasketusta maksimipistemäärästä.

Harjoitustehtävillä saa lisäpisteitä oheisen taulukon mukaan:
yli 30% : 1
yli 50% : 2
yli 70% : 3
yli 90% : 4
Kotitehtäväpisteiden saamiseksi on osallistuttava kotitehtävien tarkistukseen (tarkemmat ohjeet Moodlessa).

Uusinta- ja korotus:
Välikokeita/viikkokokeita ei voi uusia eikä korottaa. Kurssin uusinta- ja korotustentti on täysin erillinen koe, johon ei vaikuta enää kotitehtävä-, nettitehtävä- eikä välikoepisteet.

Arviointikriteeri - hylätty (0)
Opiskelija osallistuu säännöllisesti opetukseen ja sen työmuotoihin, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Mikäli edellä mainitut kriteerit eivät täyty, niin opiskelija poistetaan toteutukselta. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.

Assessment scale

0-5

Teaching methods

Lähiopetus, itsenäinen opiskelu, tuntiharjoitukset ja kotitehtävät, videomateriaalit, nettitehtävät (STACK-tehtävät), viikkokokeet/välikokeet, tentti

Learning materials

Opettajan Moodlessa jakama materiaali (pdf-materiaalit, videot, interaktiiviset tehtävät)
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS/ TI-nspire CX II CAS -laskin.

Student workload

Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-opetuksesta, jossa opettajaja mukana
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, nettitehtävät, opetusvideot)
-kokeista
Opettajan pitämiä lähitunteja on n. 30 h

Content scheduling

- määrätty integraali
- graafinen tulkinta
- numeerinen integrointi
- integraalifunktio ja integrointikaavoja
- analyysin peruslause (määrätyn integraalin ja integraalifunktion yhteys)
- pienten differentiaalien menetelmä ja sovellustehtäviä
- differentiaaliyhtälöiden perusteet
- separoituva ja 1. kertaluvun lineaarinen differentiaaliyhtälö sekä niiden sovelluksia

Further information

Opetus alkaa lukujärjestyksen mukaisesti.
Opintojaksoon on Moodle-toteutus. Opettaja lähettää Moodle-avaimen kurssille ilmoittautuneille ennen kurssia alkua sähköpostilla.
Huom! Moodle-toteutus täytyy hakea kurssitunnuksella.

Assessment criteria - fail (0) (Not in use, Look at the Assessment criteria above)

Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.

Assessment criteria - satisfactory (1-2) (Not in use, Look at the Assessment criteria above)

Opiskelija ymmärtää määrätyn integraalin pinta-alatulkinnan ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia integraalin käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Lisäksi opiskelija osaa ratkaista yksinkertaisia differentiaaliyhtälöitä. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä on vielä haparointia.Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Assessment criteria - good (3-4) (Not in use, Look at the Assessment criteria above)

Edellisten lisäksi opiskelija ymmärtää pienten differentiaalien menetelmän niin, että osaa soveltaa integraalin käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut.Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Assessment criteria - excellent (5) (Not in use, Look at the Assessment criteria above)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut sekä käyttää oikeita matemaattisia merkintöjä. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Go back to top of page