Skip to main content

Differential Calculus (3 cr)

Code: 5N00EG74-3067

General information


Enrolment period
12.11.2021 - 05.01.2022
Registration for the implementation has ended.
Timing
05.01.2022 - 27.02.2022
Implementation has ended.
Credits
3 cr
Mode of delivery
Contact learning
Unit
TAMK Mathematics and Physics
Campus
TAMK Main Campus
Teaching languages
Finnish
Degree programmes
Degree Programme in Laboratory Engineering
Teachers
Ulla Miekkala
Person in charge
Ulla Miekkala
Course
5N00EG74

Objectives (course unit)

Student is able to
- apply the concepts of limit and derivative when solving practical problems
- interpret derivative as rate of change
- determine the derivative using graphical, numerical and symbolical methods
- construct error estimates using the differential method

Content (course unit)

Limit, Derivative, Partial Derivative, Graphical Differentiation, Numerical Differentiation, Symbolic Differentiation, Applications of Derivative, Error Estimation with Differential.

Prerequisites (course unit)

Orientation for Engineering Mathematics and Functions and Matrices or similar skills

Assessment criteria, satisfactory (1-2) (course unit)

Student understands the basic concept of derivative and is able to solve simple applications that are similar to the model problems solved during the course. Student also knows how to interpret derivative in graphs and how to compute it numerically. Justification of solutions and using mathematical concepts may still be somewhat vague. Student takes care of his/her own studies and can cope with exercises with some help from the group.

Assessment criteria, good (3-4) (course unit)

In addition, student is able to apply derivative to basic technical problems, for example to optimization. Student is also able to explain the methods of her/his solutions. Mathematical notations and concepts are mainly used correctly. Student is able to solve the given exercises independently and also helps other students in the group.

Assessment criteria, excellent (5) (course unit)

In addition, student has an overall understanding of course topics. He/she can solve more demanding engineering problems and has the ability to present and justify the chosen methods of solution. Mathematical notations and concepts are used precisely. Student is motivated and committed to help the group to manage the course.

Exam schedules

Opintojakson koe pidetään xx.2022 (alustava aika, voi tulla muutoksia erityisesti koronarajoitusten mukaan).
Uusintaan osallistuminen edellyttää arvosanaa nolla.
1. uusinta xx.2022 klo 17.00-20.00 (sovitaan kurssin aikana)
2. uusinta/ korotus xx.2022 klo 17.00-20.00 (sovitaan kurssin aikana)
Hyväksyttyä arvosanaa voi korottaa 2. uusintakokeessa.

Assessment methods and criteria

Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan kokeella, nettitehtävillä ja viikoittain tarkastettavilla harjoitustehtävillä, joiden tekeminen vaikuttaa arvosanaan. Kotitehtäväpisteiden saamiseksi on osallistuttava kotitehtävien tarkistukseen (tarkemmat ohjeet Moodlessa).Opintojaksoon saattaa sisältyä myös ryhmässä tehtäviä osioita. Kokeen arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan, nettitehtävien ja kotitehtävien tekoa sekä kurssikokeeseen osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois. Varma läpipääsyraja on 1/3 kurssikokeen ja nettitehtävien yhteenlasketusta maksimipistemäärästä.
Harjoitustehtävillä saa lisäpisteitä oheisen taulukon mukaan:
yli 30% : 1
yli 50%: 2
yli 70% : 3
yli 90% : 4
Harjoitustehtäväpisteet eivät vaikuta kurssin läpipääsyyn vaan niillä voi korottaa arvosanaa. Lopullinen arvosana määräytyy koepisteiden, nettitehtävien ja harjoitustehtäväpisteiden yhteismäärästä sekä osallistumisaktiivisuudesta. Harjoitustehtäväpisteitä ei huomioida enää uusinta- ja korotustenttien yhteydessä.
Arviointikriteeri -hylätty(0):
Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.

Assessment scale

0-5

Teaching methods

Etäopetus zoomin avulla, itsenäinen opiskelu, tuntiharjoitukset ja kotitehtävät, videomateriaalit, nettitehtävät, tentti

Learning materials

Opettajan Moodlessa jakama materiaali (sähköinen PLUSSA-materiaali, videot, interaktiiviset tehtävät, pdf-materiaalit)
Kaavasto: Tekniikan kaavasto, Tammertekniikka

Student workload

Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-opetuksesta, jossa opettajaja mukana (Zoom-tunnit)
-itsenäisestä työskentelystä (mm. kotitehtävät, nettitehtävät, opetusvideot)
-kokeesta
Opettajan pitämiä kontaktitunteja on 24 h (koe mukaan lukien)

Content scheduling

-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät

Further information

Opetus alkaa 26.11.2021
Opintojaksoon on Moodle-toteutus.

Assessment criteria - fail (0) (Not in use, Look at the Assessment criteria above)

Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.

Assessment criteria - satisfactory (1-2) (Not in use, Look at the Assessment criteria above)

Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti, numeerisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia.Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä on vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.

Assessment criteria - good (3-4) (Not in use, Look at the Assessment criteria above)

Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.

Assessment criteria - excellent (5) (Not in use, Look at the Assessment criteria above)

Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut sekä käyttää oikeita matemaattisia merkintöjä. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.

Go back to top of page