Data Analytics (3 cr)
Code: 5N00EI59-3004
General information
- Enrolment period
- 01.06.2021 - 03.09.2021
- Registration for the implementation has ended.
- Timing
- 23.08.2021 - 24.12.2021
- Implementation has ended.
- Credits
- 3 cr
- Local portion
- 3 cr
- Mode of delivery
- Contact learning
- Campus
- TAMK Main Campus
- Teaching languages
- Finnish
- Degree programmes
- Degree Programme in ICT Engineering, students who began in 2014-2018
Objectives (course unit)
The student
- is able to handle data sets
- has basic knowledge of mathematics related to data-analysis
- is able to use and apply classical data analysis for solving technical problems
- is familiar with basics and methods of regression, classification and clustering
Content (course unit)
• Classical Data Analysis
• Classification, Decision Trees, Random Forests
• Clustering, K-means
• Regression, Linear Regression, Logistic Regression
• Basics of Neural Network
Assessment criteria, satisfactory (1-2) (course unit)
The student is able to handle data and knows the basics of data analysis and the related key methods. The student is able to calculate simple tasks related to the topics of the course, which are similar to the examples presented.
Assessment criteria, good (3-4) (course unit)
In addition to the above, the student is able to apply the course knowledge in new situations and justify his/her solutions. The student is able to use the concepts and methods related to the subjects of the course correctly. The student performs the given tasks independently.
Assessment criteria, excellent (5) (course unit)
In addition to the above, the student has a comprehensive understanding of the course topics and their use in problem solving, as well as the ability to present and justify his/her solutions logically.
Exam schedules
Loppukoe viimeisellä opetusviikolla Moodlessa ilmoitettavana ajankohtana
Uusintatentit
dd.1.2022 klo 17-20
dd.2.2022 klo 17-20
Evaluation methods and criteria
Opintojakson suorittaminen perustuu seuraaviin osa-alueisiin
Aktiivinen osallistuminen opetukseen
Harjoitustyö(t)
Harjoitustehtävät
Loppukoe / tentti
Assessment scale
0-5
Teaching methods
Lähiopetus / etäopetus, yhteisöllinen oppiminen, harjoitustehtävät, harjoitustyöt
Learning materials
Moodlessa ilmoitettu ja julkaistava materiaali
Student workload
Oppitunteja n. 30 h
Itsenäinen opiskelu n. 25 h
Harjoitustyöt n. 25 h
Content scheduling
-Matlab perusteet
-Klassinen data-analyysi
-Data-analyysin menetelmiä
-Harjoitustyöt