Integral Calculus (3 cr)
Code: 5N00BC66-3117
General information
- Enrolment period
- 02.07.2019 - 20.10.2019
- Registration for the implementation has ended.
- Timing
- 22.10.2019 - 22.12.2019
- Implementation has ended.
- Credits
- 3 cr
- Local portion
- 3 cr
- Mode of delivery
- Contact learning
- Unit
- Electrical and Automation Engineering
- Campus
- TAMK Main Campus
- Teaching languages
- Finnish
- Degree programmes
- Degree Programme in Electrical Engineering
Objectives (course unit)
Student is able to
- understand basic terminology of integral calculus
- determine integral graphically, numerically and symbolically
- calculate areas using definite integral
- solve basic differential equations and use differential equations for modeling physical phenomena
Content (course unit)
Integral Function, Definite Integral, Graphical Integration, Numerical Integration, Symbolic Integration, Calculation of Areas and Volumes with Integral, Differential Equations and Applications.
Prerequisites (course unit)
Orientation for Engineering Mathematics, Functions and Matrices and Differential Calculus or similar skills
Exam schedules
Opintojakson koe pidetään 10.12.2019 tuntiaikaan (alustava aika, voi tulla muutoksia)
Uusintaan osallistuminen edellyttää arvosanaa nolla .
1. uusinta ke 15.1.2020 klo 17.00-20.00 Juhlasalissa
2. uusinta/korotus ke 5.2.2020 klo 17.00-20.00 Juhlasalissa
Hyväksyttyä arvosanaa voi korottaa VAIN TÄSSÄ 2. uusintakokeessa (ei siis ensimmäisessä eikä myöhemmin)
Uusintakokeeseen ja korotukseen ilmoittaudutaan TAMKin tenttijärjestelmän kautta (Pakki).
Uusintaan osallistuminen edellyttää arvosanaa 0.
Sairastapauksissa vaaditaan lääkärintodistus.
Poissaolo kokeesta vastaa hylättyä suoritusta.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Evaluation methods and criteria
Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan kokeilla ja viikoittain tarkastettavilla harjoitustehtävillä, joiden tekeminen vaikuttaa arvosanaan. Kotitehtäväpisteiden saamiseksi on osallistuttava kotitehtävien tarkistukseen (tarkemmat ohjeet Tabulassa).Opintojaksoon saattaa sisätyä myös ryhmässä tehtäviä osioita. Kokeen arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan sekä kurssikokeeseen osallistumista.Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois.Varma läpipääsyraja on 40% kurssikokeen maksimipistemäärästä.
Harjoitustehtävillä saa lisäpisteitä oheisen taulukon mukaan:
yli 30% : 1
yli 50%: 2
yli 70% : 3
yli 90% : 4
Harjoitustehtäväpisteet eivät vaikuta kurssin läpipääsyyn vaan niillä voi korottaa arvosanaa. Lopullinen arvosana määräytyy koepisteiden ja harjoitustehtäväpisteiden yhteismäärästä sekä osallistumisaktiivisuudesta.Harjoitustehtäväpisteitä ei huomioida enää uusinta- ja korotustenttien yhteydessä.
Arviointikriteeri - hylätty (0)
Opiskelija osallistuu säännöllisesti opetukseen ja suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.
Assessment scale
0-5
Teaching methods
lähiopetus
ryhmätyö
harjoitukset
tentti
Learning materials
Opettajan jakama materiaali
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS-laskin.
Student workload
Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-lähiopetuksesta, jossa opettajaja mukana
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, STACK-tehtävät, opetusvideot)
-kokeesta
Opettajan pitämiä lähitunteja sisältäen kokeet on n. 35 h
Content scheduling
- määrätty integraali
- graafinen tulkinta
- numeerinen integrointi
- integraalifunktio ja integrointikaavoja
- analyysin peruslause (määrätyn integraalin ja integraalifunktion yhteys)
- pienten differentiaalien menetelmä ja sovellustehtäviä
- differentiaaliyhtälöiden perusteet
- muuttujien erottaminen ja sovelluksia
- lineaarinen vakiokertoiminen differentiaaliyhtälö ja sovelluksia
Further information
Opetus alkaa lukujärjestyksen mukaisesti.
Opintojaksoon on Tabula-toteutus. Opettajalta saa Tabula-avaimen.
Assessment criteria - fail (0) (Not in use, Look at the Assessment criteria above)
Opiskelija osallistuu säännöllisesti opetukseen ja suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.
Assessment criteria - satisfactory (1-2) (Not in use, Look at the Assessment criteria above)
Opiskelija ymmärtää määrätyn integraalin pinta-alatulkinnan ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia integraalin käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Lisäksi opiskelija osaa ratkaista yksinkertaisia differentiaaliyhtälöitä. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä on vielä haparointia.Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Assessment criteria - good (3-4) (Not in use, Look at the Assessment criteria above)
Edellisten lisäksi opiskelija ymmärtää pienten differentiaalien menetelmän niin, että osaa soveltaa integraalin käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut.Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Assessment criteria - excellent (5) (Not in use, Look at the Assessment criteria above)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut sekä käyttää oikeita matemaattisia merkintöjä. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.