Functions and Matrices (3 cr)
Code: 5N00BC64-3069
General information
- Enrolment period
- 01.06.2016 - 04.09.2016
- Registration for the implementation has ended.
- Timing
- 24.10.2016 - 18.12.2016
- Implementation has ended.
- Credits
- 3 cr
- Local portion
- 3 cr
- Mode of delivery
- Contact learning
- Unit
- Building Services Engineering
- Campus
- TAMK Main Campus
- Teaching languages
- Finnish
- Seats
- 10 - 36
- Degree programmes
- Degree Programme in Building Services Engineering, HVAC Systems
Objectives (course unit)
Student is able to:
- understand the concept of a function and recognizes the characteristic properties of different basic functions
- solve equations involving basic functions and apply them in practical problems
- recognize graphs of basic functions
- perform basic calculations with matrices and apply them in practical problems
Content (course unit)
Basic Functions and Terminology (Polynomial, Rational, Power, Exponential, Logarithmic and Trigonometric Functions), Graphs of Basic Functions, Equations, Matrix Operations, Group of Linear Equations.
Prerequisites (course unit)
Orientation for engineering mathematics or similar skills.
Exam schedules
Opintojakson kurssikoe pidetään normaaliin tuntiaikaan XX.12.2016.
Uusintakokeet:
1. uusintakoe 18.1.2017 klo 17-20 Juhlasalissa
2. uusintakoe/ korotus 8.2.2017 klo 17-20 Juhlasalissa
Hyväksyttyä arvosanaa voi korottaa 2. uusintakokeessa (ei siis ensimmäisessä)
Uusintakokeeseen ja korotukseen ilmoittaudutaan Pakin kautta.
Uusintaan osallistuminen edellyttää arvosanaa 0.
Poissaolo kokeesta vastaa hylättyä suoritusta.
Sairastapauksissa vaaditaan lääkärintodistus.
Evaluation methods and criteria
Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan kokeilla ja viikoittain tarkastettavilla harjoitustehtävillä, joiden tekeminen vaikuttaa arvosanaan. Kotitehtäväpisteiden saamiseksi on osallistuttava kotitehtävien tarkistukseen ja oltava valmis esittämään oma ratkaisunsa. Kokeen arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan sekä kurssikokeeseen osallistumista.
Harjoitustehtävillä saa lisäpisteitä oheisen taulukon mukaan:
yli 30% : 1
yli 40% : 2
yli 50% : 3
yli 70% : 4
yli 90% : 5
Harjoitustehtäväpisteet eivät vaikuta kurssin läpipääsyyn vaan niillä voi korottaa arvosanaa. Lopullinen arvosana määräytyy kokeen, harjoitustehtäväpisteiden ja osallistumisaktiivisuuden perusteella.
Harjoitustehtäväpisteet vaikuttavat myös uusinnan/ korotuksen tulokseen.
Teaching methods
Lähiopetus, itsenäinen opiskelu, tuntiharjoitukset ja kotitehtävät, videomateriaalit, STACK-tehtävät, tentti
Learning materials
Opettajan jakama materiaali, joka löytyy Tabulasta.
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi laskin TI-nspire CX CAS.
Student workload
Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
- lähiopetuksesta, jossa opettaja mukana
- ryhmätöistä (opettaja ei ole mukana),
- itsenäisestä työskentelystä ja
- kokeista.
Opettajan pitämiä lähitunteja sisältäen kokeet on n. 36 h.
Content scheduling
Funktioiden perusteet
Polynomifunktiot (erityisesti suora ja paraabeli)
Eksponentti- ja logaritmifunktiot sekä -yhtälöt
Matriisilaskenta
Further information
Opetus alkaa lukujärjestyksen mukaisesti viikolla 43.
Opintojaksoon tulee Tabula-toteutus. Opettajalta saa Tabula-avaimen.
Assessment criteria - satisfactory (1-2) (Not in use, Look at the Assessment criteria above)
Opiskelija ymmärtää matriisien ja funktioiden peruskäsitteet ja tunnistaa eri tyyppisten funktioiden kuvaajia. Lisäksi hän osaa ratkaista eri funktioihin liittyviä yhtälöitä ja yksinkertaisia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä on vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Assessment criteria - good (3-4) (Not in use, Look at the Assessment criteria above)
Edellisten lisäksi opiskelija osaa soveltaa opintojakson asioita erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Assessment criteria - excellent (5) (Not in use, Look at the Assessment criteria above)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja hän osaa soveltaa niitä vaikeampiin ongelmiin. Opiskelijalla on taito esittää ja perustella loogisesti valitut ratkaisut. Ratkaisut esitetään selkeästi ja matemaattisia käsitteitä käytetään täsmällisesti. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.