Basic Physics in TechnologyLaajuus (5 cr)
Code: 5N00GL31
Credits
5 op
Objectives
In this course, you will learn the basics of the physics behind technology, the subject area being mechanics, thermophysics and electricity
As a student, you will
• know the basic objects and phenomena related to mechanics, thermophysics and electricity
• know how to connect objects and phenomena related to mechanics, thermophysics and electricity to technical and everyday practical applications
• know the quantities, their units, and the basic laws of physics between the quantities related to the basic elements and phenomena
• have a basic understanding about phenomena related to mechanics, thermophysics and electricity
• can describe the basic principles of solving problems related to mechanics, thermophysics and electricity on a qualitative level and justify the choices you make
• recognize the quantities related to the problems and their preservation or change
• know how to choose the laws needed to solve problems
• know the limitations of the laws used
• know how to solve quantitative problems by use of the physical laws
• know how to state the solutions of quantitative problems with appropriate accuracy of presentation
• can justify the choices you make orally or in writing
• know how to evaluate the reasonableness, correctness and reliability of the calculated solutions you have made
• can carry out a simple measurement related to mechanics, thermophysics and electricity and interpret the results you get
• can make and interpret graphical presentations
Content
Mechanics
• Force, gravity, friction, interaction, effect of force on motion, Newton's laws
• Work, energy, conservation of energy, power, efficiency
• Basic movement models,
Thermal physics
• Temperature, temperature change and thermal expansion
• Thermal energy, basic concepts of thermodynamics of substances, changes of state, calorimetry
• Basic models of heat transfer
• Heat output of the flowing substance
Electricity
• ´Electric current, voltage, resistance, power, Ohm's law, electrical energy
Assessment criteria, satisfactory (1-2)
Student:
• knows objects and phenomena related to the topic
• partially knows how to relate objects and phenomena related to the topic to technology and everyday applications
• knows the quantities related to the objects and phenomena of the subject area, the related units and the laws between the quantities only in familiar, exemplary situations.
• has a basic idea of the phenomena related to the subject area of insufficient qualitative level
• Recognizes the basic phenomena of physics appearing in problems related to the topic, the whole is partly unstructured and incomplete.
• can describe on a qualitative level some of the basic principles of solving problems related to the topic and makes his solutions as copies of previously studied examples.
• recognize, with support or based on a previous example, the quantities related to the problems and their preservation or change
• the selection of the laws needed to solve the problems is based on support or ready-made example models. Self-directed selection of models is uncertain and partly random.
• knows how to solve computational problems in situations that are, for example, familiar
• can sometimes state the solutions of computational problems with suitable accuracy of presentation
• the student has challenges justifying the choices he has made orally or in writing
• there are challenges in assessing the correctness and reliability of computational solutions.
• Works in the measurement related to the topic as part of a group
Assessment criteria, good (3-4)
• knows the objects and phenomena related to the topic
• knows how to connect objects and phenomena related to the topic to technology and everyday applications
• knows the quantities related to the objects and phenomena of the topic, their units and the basic laws of physics between the quantities
• have a basic idea of the right qualitative level about the phenomena related to the topic
• can identify the basic phenomena of physics that are relevant to the solution of the problems in the problems related to the topic
• can describe on a qualitative level the basic principles of solving problems related to the subject area and justify the choices they have made related to solving problems
• identify the quantities related to problems and their preservation or change
• knows how to choose the laws needed to solve problems
• Knows the limitations of the laws he uses
• knows how to solve computational problems by making good use of the laws of his choice
• knows how to state the solutions of computational problems with appropriate accuracy of presentation
• can justify the choices he made orally or in writing
• knows how to evaluate the reasonableness, correctness and reliability of the calculated solutions he has made
• can carry out a simple measurement related to the topic and interpret the results obtained through the quantities and basic laws they have adopted
Assessment criteria, excellent (5)
• knows the objects and phenomena related to the subject area and their connection to other subject areas
• knows how to comprehensively relate objects and phenomena related to the topic to technology and everyday applications
• thoroughly knows the quantities related to the objects and phenomena of the topic, their units and the basic laws of physics between the quantities and knows their limitations
• has a basic idea of the right qualitative level about the phenomena related to the topic and knows how to express it to others
• can identify the basic phenomena of physics that are relevant to the solution of the problems in the problems related to the topic
• can describe on a qualitative level the basic principles of solving problems related to the subject area and justify the choices they have made related to solving problems
• identify the quantities related to the problems in a broad area, and their preservation or change
• knows how to choose the laws needed to solve problems
• Knows the limitations of the laws he uses
• knows how to solve computational problems by making good use of the laws of his choice
• knows how to state the solutions of computational problems with appropriate accuracy of presentation
• can justify the choices he made orally or in writing
• can reasonably assess the reasonableness, correctness and reliability of the calculated solutions he has made
• can implement and, if necessary, plan a simple measurement related to the topic and interpret the results obtained through the quantities and basic laws they have adopted.
Enrolment period
02.07.2025 - 08.09.2025
Timing
01.09.2025 - 31.12.2025
Credits
5 op
Mode of delivery
Contact teaching
Unit
TAMK Mathematics and Physics
Campus
TAMK Main Campus
Teaching languages
- Finnish
Degree programmes
- Degree Programme in Vehicle Engineering
Teachers
- Tuomo Nieminen
Person in charge
Tuomo Nieminen
Groups
-
25AUTOA
Objectives (course unit)
In this course, you will learn the basics of the physics behind technology, the subject area being mechanics, thermophysics and electricity
As a student, you will
• know the basic objects and phenomena related to mechanics, thermophysics and electricity
• know how to connect objects and phenomena related to mechanics, thermophysics and electricity to technical and everyday practical applications
• know the quantities, their units, and the basic laws of physics between the quantities related to the basic elements and phenomena
• have a basic understanding about phenomena related to mechanics, thermophysics and electricity
• can describe the basic principles of solving problems related to mechanics, thermophysics and electricity on a qualitative level and justify the choices you make
• recognize the quantities related to the problems and their preservation or change
• know how to choose the laws needed to solve problems
• know the limitations of the laws used
• know how to solve quantitative problems by use of the physical laws
• know how to state the solutions of quantitative problems with appropriate accuracy of presentation
• can justify the choices you make orally or in writing
• know how to evaluate the reasonableness, correctness and reliability of the calculated solutions you have made
• can carry out a simple measurement related to mechanics, thermophysics and electricity and interpret the results you get
• can make and interpret graphical presentations
Content (course unit)
Mechanics
• Force, gravity, friction, interaction, effect of force on motion, Newton's laws
• Work, energy, conservation of energy, power, efficiency
• Basic movement models,
Thermal physics
• Temperature, temperature change and thermal expansion
• Thermal energy, basic concepts of thermodynamics of substances, changes of state, calorimetry
• Basic models of heat transfer
• Heat output of the flowing substance
Electricity
• ´Electric current, voltage, resistance, power, Ohm's law, electrical energy
Assessment criteria, satisfactory (1-2) (course unit)
Student:
• knows objects and phenomena related to the topic
• partially knows how to relate objects and phenomena related to the topic to technology and everyday applications
• knows the quantities related to the objects and phenomena of the subject area, the related units and the laws between the quantities only in familiar, exemplary situations.
• has a basic idea of the phenomena related to the subject area of insufficient qualitative level
• Recognizes the basic phenomena of physics appearing in problems related to the topic, the whole is partly unstructured and incomplete.
• can describe on a qualitative level some of the basic principles of solving problems related to the topic and makes his solutions as copies of previously studied examples.
• recognize, with support or based on a previous example, the quantities related to the problems and their preservation or change
• the selection of the laws needed to solve the problems is based on support or ready-made example models. Self-directed selection of models is uncertain and partly random.
• knows how to solve computational problems in situations that are, for example, familiar
• can sometimes state the solutions of computational problems with suitable accuracy of presentation
• the student has challenges justifying the choices he has made orally or in writing
• there are challenges in assessing the correctness and reliability of computational solutions.
• Works in the measurement related to the topic as part of a group
Assessment criteria, good (3-4) (course unit)
• knows the objects and phenomena related to the topic
• knows how to connect objects and phenomena related to the topic to technology and everyday applications
• knows the quantities related to the objects and phenomena of the topic, their units and the basic laws of physics between the quantities
• have a basic idea of the right qualitative level about the phenomena related to the topic
• can identify the basic phenomena of physics that are relevant to the solution of the problems in the problems related to the topic
• can describe on a qualitative level the basic principles of solving problems related to the subject area and justify the choices they have made related to solving problems
• identify the quantities related to problems and their preservation or change
• knows how to choose the laws needed to solve problems
• Knows the limitations of the laws he uses
• knows how to solve computational problems by making good use of the laws of his choice
• knows how to state the solutions of computational problems with appropriate accuracy of presentation
• can justify the choices he made orally or in writing
• knows how to evaluate the reasonableness, correctness and reliability of the calculated solutions he has made
• can carry out a simple measurement related to the topic and interpret the results obtained through the quantities and basic laws they have adopted
Assessment criteria, excellent (5) (course unit)
• knows the objects and phenomena related to the subject area and their connection to other subject areas
• knows how to comprehensively relate objects and phenomena related to the topic to technology and everyday applications
• thoroughly knows the quantities related to the objects and phenomena of the topic, their units and the basic laws of physics between the quantities and knows their limitations
• has a basic idea of the right qualitative level about the phenomena related to the topic and knows how to express it to others
• can identify the basic phenomena of physics that are relevant to the solution of the problems in the problems related to the topic
• can describe on a qualitative level the basic principles of solving problems related to the subject area and justify the choices they have made related to solving problems
• identify the quantities related to the problems in a broad area, and their preservation or change
• knows how to choose the laws needed to solve problems
• Knows the limitations of the laws he uses
• knows how to solve computational problems by making good use of the laws of his choice
• knows how to state the solutions of computational problems with appropriate accuracy of presentation
• can justify the choices he made orally or in writing
• can reasonably assess the reasonableness, correctness and reliability of the calculated solutions he has made
• can implement and, if necessary, plan a simple measurement related to the topic and interpret the results obtained through the quantities and basic laws they have adopted.
Assessment scale
0-5
Enrolment period
02.07.2025 - 08.09.2025
Timing
01.08.2025 - 31.12.2025
Credits
5 op
Mode of delivery
Contact teaching
Unit
TAMK Mathematics and Physics
Campus
TAMK Main Campus
Teaching languages
- Finnish
Degree programmes
- Degree Programme in Vehicle Engineering
Teachers
- Tuomo Nieminen
Person in charge
Tuomo Nieminen
Groups
-
25AUTOB
Objectives (course unit)
In this course, you will learn the basics of the physics behind technology, the subject area being mechanics, thermophysics and electricity
As a student, you will
• know the basic objects and phenomena related to mechanics, thermophysics and electricity
• know how to connect objects and phenomena related to mechanics, thermophysics and electricity to technical and everyday practical applications
• know the quantities, their units, and the basic laws of physics between the quantities related to the basic elements and phenomena
• have a basic understanding about phenomena related to mechanics, thermophysics and electricity
• can describe the basic principles of solving problems related to mechanics, thermophysics and electricity on a qualitative level and justify the choices you make
• recognize the quantities related to the problems and their preservation or change
• know how to choose the laws needed to solve problems
• know the limitations of the laws used
• know how to solve quantitative problems by use of the physical laws
• know how to state the solutions of quantitative problems with appropriate accuracy of presentation
• can justify the choices you make orally or in writing
• know how to evaluate the reasonableness, correctness and reliability of the calculated solutions you have made
• can carry out a simple measurement related to mechanics, thermophysics and electricity and interpret the results you get
• can make and interpret graphical presentations
Content (course unit)
Mechanics
• Force, gravity, friction, interaction, effect of force on motion, Newton's laws
• Work, energy, conservation of energy, power, efficiency
• Basic movement models,
Thermal physics
• Temperature, temperature change and thermal expansion
• Thermal energy, basic concepts of thermodynamics of substances, changes of state, calorimetry
• Basic models of heat transfer
• Heat output of the flowing substance
Electricity
• ´Electric current, voltage, resistance, power, Ohm's law, electrical energy
Assessment criteria, satisfactory (1-2) (course unit)
Student:
• knows objects and phenomena related to the topic
• partially knows how to relate objects and phenomena related to the topic to technology and everyday applications
• knows the quantities related to the objects and phenomena of the subject area, the related units and the laws between the quantities only in familiar, exemplary situations.
• has a basic idea of the phenomena related to the subject area of insufficient qualitative level
• Recognizes the basic phenomena of physics appearing in problems related to the topic, the whole is partly unstructured and incomplete.
• can describe on a qualitative level some of the basic principles of solving problems related to the topic and makes his solutions as copies of previously studied examples.
• recognize, with support or based on a previous example, the quantities related to the problems and their preservation or change
• the selection of the laws needed to solve the problems is based on support or ready-made example models. Self-directed selection of models is uncertain and partly random.
• knows how to solve computational problems in situations that are, for example, familiar
• can sometimes state the solutions of computational problems with suitable accuracy of presentation
• the student has challenges justifying the choices he has made orally or in writing
• there are challenges in assessing the correctness and reliability of computational solutions.
• Works in the measurement related to the topic as part of a group
Assessment criteria, good (3-4) (course unit)
• knows the objects and phenomena related to the topic
• knows how to connect objects and phenomena related to the topic to technology and everyday applications
• knows the quantities related to the objects and phenomena of the topic, their units and the basic laws of physics between the quantities
• have a basic idea of the right qualitative level about the phenomena related to the topic
• can identify the basic phenomena of physics that are relevant to the solution of the problems in the problems related to the topic
• can describe on a qualitative level the basic principles of solving problems related to the subject area and justify the choices they have made related to solving problems
• identify the quantities related to problems and their preservation or change
• knows how to choose the laws needed to solve problems
• Knows the limitations of the laws he uses
• knows how to solve computational problems by making good use of the laws of his choice
• knows how to state the solutions of computational problems with appropriate accuracy of presentation
• can justify the choices he made orally or in writing
• knows how to evaluate the reasonableness, correctness and reliability of the calculated solutions he has made
• can carry out a simple measurement related to the topic and interpret the results obtained through the quantities and basic laws they have adopted
Assessment criteria, excellent (5) (course unit)
• knows the objects and phenomena related to the subject area and their connection to other subject areas
• knows how to comprehensively relate objects and phenomena related to the topic to technology and everyday applications
• thoroughly knows the quantities related to the objects and phenomena of the topic, their units and the basic laws of physics between the quantities and knows their limitations
• has a basic idea of the right qualitative level about the phenomena related to the topic and knows how to express it to others
• can identify the basic phenomena of physics that are relevant to the solution of the problems in the problems related to the topic
• can describe on a qualitative level the basic principles of solving problems related to the subject area and justify the choices they have made related to solving problems
• identify the quantities related to the problems in a broad area, and their preservation or change
• knows how to choose the laws needed to solve problems
• Knows the limitations of the laws he uses
• knows how to solve computational problems by making good use of the laws of his choice
• knows how to state the solutions of computational problems with appropriate accuracy of presentation
• can justify the choices he made orally or in writing
• can reasonably assess the reasonableness, correctness and reliability of the calculated solutions he has made
• can implement and, if necessary, plan a simple measurement related to the topic and interpret the results obtained through the quantities and basic laws they have adopted.
Assessment scale
0-5
Enrolment period
02.07.2025 - 31.07.2025
Timing
01.08.2025 - 31.12.2025
Credits
5 op
Mode of delivery
Contact teaching
Unit
Electrical and Automation Engineering
Campus
TAMK Main Campus
Teaching languages
- Finnish
Seats
0 - 40
Degree programmes
- Degree Programme in Electrical Engineering
Teachers
- Fysiikka Virtuaalihenkilö
Person in charge
Outi Rask
Groups
-
25I231C
Objectives (course unit)
In this course, you will learn the basics of the physics behind technology, the subject area being mechanics, thermophysics and electricity
As a student, you will
• know the basic objects and phenomena related to mechanics, thermophysics and electricity
• know how to connect objects and phenomena related to mechanics, thermophysics and electricity to technical and everyday practical applications
• know the quantities, their units, and the basic laws of physics between the quantities related to the basic elements and phenomena
• have a basic understanding about phenomena related to mechanics, thermophysics and electricity
• can describe the basic principles of solving problems related to mechanics, thermophysics and electricity on a qualitative level and justify the choices you make
• recognize the quantities related to the problems and their preservation or change
• know how to choose the laws needed to solve problems
• know the limitations of the laws used
• know how to solve quantitative problems by use of the physical laws
• know how to state the solutions of quantitative problems with appropriate accuracy of presentation
• can justify the choices you make orally or in writing
• know how to evaluate the reasonableness, correctness and reliability of the calculated solutions you have made
• can carry out a simple measurement related to mechanics, thermophysics and electricity and interpret the results you get
• can make and interpret graphical presentations
Content (course unit)
Mechanics
• Force, gravity, friction, interaction, effect of force on motion, Newton's laws
• Work, energy, conservation of energy, power, efficiency
• Basic movement models,
Thermal physics
• Temperature, temperature change and thermal expansion
• Thermal energy, basic concepts of thermodynamics of substances, changes of state, calorimetry
• Basic models of heat transfer
• Heat output of the flowing substance
Electricity
• ´Electric current, voltage, resistance, power, Ohm's law, electrical energy
Assessment criteria, satisfactory (1-2) (course unit)
Student:
• knows objects and phenomena related to the topic
• partially knows how to relate objects and phenomena related to the topic to technology and everyday applications
• knows the quantities related to the objects and phenomena of the subject area, the related units and the laws between the quantities only in familiar, exemplary situations.
• has a basic idea of the phenomena related to the subject area of insufficient qualitative level
• Recognizes the basic phenomena of physics appearing in problems related to the topic, the whole is partly unstructured and incomplete.
• can describe on a qualitative level some of the basic principles of solving problems related to the topic and makes his solutions as copies of previously studied examples.
• recognize, with support or based on a previous example, the quantities related to the problems and their preservation or change
• the selection of the laws needed to solve the problems is based on support or ready-made example models. Self-directed selection of models is uncertain and partly random.
• knows how to solve computational problems in situations that are, for example, familiar
• can sometimes state the solutions of computational problems with suitable accuracy of presentation
• the student has challenges justifying the choices he has made orally or in writing
• there are challenges in assessing the correctness and reliability of computational solutions.
• Works in the measurement related to the topic as part of a group
Assessment criteria, good (3-4) (course unit)
• knows the objects and phenomena related to the topic
• knows how to connect objects and phenomena related to the topic to technology and everyday applications
• knows the quantities related to the objects and phenomena of the topic, their units and the basic laws of physics between the quantities
• have a basic idea of the right qualitative level about the phenomena related to the topic
• can identify the basic phenomena of physics that are relevant to the solution of the problems in the problems related to the topic
• can describe on a qualitative level the basic principles of solving problems related to the subject area and justify the choices they have made related to solving problems
• identify the quantities related to problems and their preservation or change
• knows how to choose the laws needed to solve problems
• Knows the limitations of the laws he uses
• knows how to solve computational problems by making good use of the laws of his choice
• knows how to state the solutions of computational problems with appropriate accuracy of presentation
• can justify the choices he made orally or in writing
• knows how to evaluate the reasonableness, correctness and reliability of the calculated solutions he has made
• can carry out a simple measurement related to the topic and interpret the results obtained through the quantities and basic laws they have adopted
Assessment criteria, excellent (5) (course unit)
• knows the objects and phenomena related to the subject area and their connection to other subject areas
• knows how to comprehensively relate objects and phenomena related to the topic to technology and everyday applications
• thoroughly knows the quantities related to the objects and phenomena of the topic, their units and the basic laws of physics between the quantities and knows their limitations
• has a basic idea of the right qualitative level about the phenomena related to the topic and knows how to express it to others
• can identify the basic phenomena of physics that are relevant to the solution of the problems in the problems related to the topic
• can describe on a qualitative level the basic principles of solving problems related to the subject area and justify the choices they have made related to solving problems
• identify the quantities related to the problems in a broad area, and their preservation or change
• knows how to choose the laws needed to solve problems
• Knows the limitations of the laws he uses
• knows how to solve computational problems by making good use of the laws of his choice
• knows how to state the solutions of computational problems with appropriate accuracy of presentation
• can justify the choices he made orally or in writing
• can reasonably assess the reasonableness, correctness and reliability of the calculated solutions he has made
• can implement and, if necessary, plan a simple measurement related to the topic and interpret the results obtained through the quantities and basic laws they have adopted.
Assessment scale
0-5
Enrolment period
02.11.2024 - 26.01.2025
Timing
20.01.2025 - 30.04.2025
Credits
5 op
Virtual portion
5 op
Mode of delivery
Online learning
Campus
TAMK Main Campus
Teaching languages
- Finnish
Seats
0 - 100
Teachers
- Tuomo Nieminen
Person in charge
Tuomo Nieminen
Groups
-
AVOINAMK
-
24CAMPUSONLINECAMPUSONLINE
-
VAPAA
Objectives (course unit)
In this course, you will learn the basics of the physics behind technology, the subject area being mechanics, thermophysics and electricity
As a student, you will
• know the basic objects and phenomena related to mechanics, thermophysics and electricity
• know how to connect objects and phenomena related to mechanics, thermophysics and electricity to technical and everyday practical applications
• know the quantities, their units, and the basic laws of physics between the quantities related to the basic elements and phenomena
• have a basic understanding about phenomena related to mechanics, thermophysics and electricity
• can describe the basic principles of solving problems related to mechanics, thermophysics and electricity on a qualitative level and justify the choices you make
• recognize the quantities related to the problems and their preservation or change
• know how to choose the laws needed to solve problems
• know the limitations of the laws used
• know how to solve quantitative problems by use of the physical laws
• know how to state the solutions of quantitative problems with appropriate accuracy of presentation
• can justify the choices you make orally or in writing
• know how to evaluate the reasonableness, correctness and reliability of the calculated solutions you have made
• can carry out a simple measurement related to mechanics, thermophysics and electricity and interpret the results you get
• can make and interpret graphical presentations
Content (course unit)
Mechanics
• Force, gravity, friction, interaction, effect of force on motion, Newton's laws
• Work, energy, conservation of energy, power, efficiency
• Basic movement models,
Thermal physics
• Temperature, temperature change and thermal expansion
• Thermal energy, basic concepts of thermodynamics of substances, changes of state, calorimetry
• Basic models of heat transfer
• Heat output of the flowing substance
Electricity
• ´Electric current, voltage, resistance, power, Ohm's law, electrical energy
Assessment criteria, satisfactory (1-2) (course unit)
Student:
• knows objects and phenomena related to the topic
• partially knows how to relate objects and phenomena related to the topic to technology and everyday applications
• knows the quantities related to the objects and phenomena of the subject area, the related units and the laws between the quantities only in familiar, exemplary situations.
• has a basic idea of the phenomena related to the subject area of insufficient qualitative level
• Recognizes the basic phenomena of physics appearing in problems related to the topic, the whole is partly unstructured and incomplete.
• can describe on a qualitative level some of the basic principles of solving problems related to the topic and makes his solutions as copies of previously studied examples.
• recognize, with support or based on a previous example, the quantities related to the problems and their preservation or change
• the selection of the laws needed to solve the problems is based on support or ready-made example models. Self-directed selection of models is uncertain and partly random.
• knows how to solve computational problems in situations that are, for example, familiar
• can sometimes state the solutions of computational problems with suitable accuracy of presentation
• the student has challenges justifying the choices he has made orally or in writing
• there are challenges in assessing the correctness and reliability of computational solutions.
• Works in the measurement related to the topic as part of a group
Assessment criteria, good (3-4) (course unit)
• knows the objects and phenomena related to the topic
• knows how to connect objects and phenomena related to the topic to technology and everyday applications
• knows the quantities related to the objects and phenomena of the topic, their units and the basic laws of physics between the quantities
• have a basic idea of the right qualitative level about the phenomena related to the topic
• can identify the basic phenomena of physics that are relevant to the solution of the problems in the problems related to the topic
• can describe on a qualitative level the basic principles of solving problems related to the subject area and justify the choices they have made related to solving problems
• identify the quantities related to problems and their preservation or change
• knows how to choose the laws needed to solve problems
• Knows the limitations of the laws he uses
• knows how to solve computational problems by making good use of the laws of his choice
• knows how to state the solutions of computational problems with appropriate accuracy of presentation
• can justify the choices he made orally or in writing
• knows how to evaluate the reasonableness, correctness and reliability of the calculated solutions he has made
• can carry out a simple measurement related to the topic and interpret the results obtained through the quantities and basic laws they have adopted
Assessment criteria, excellent (5) (course unit)
• knows the objects and phenomena related to the subject area and their connection to other subject areas
• knows how to comprehensively relate objects and phenomena related to the topic to technology and everyday applications
• thoroughly knows the quantities related to the objects and phenomena of the topic, their units and the basic laws of physics between the quantities and knows their limitations
• has a basic idea of the right qualitative level about the phenomena related to the topic and knows how to express it to others
• can identify the basic phenomena of physics that are relevant to the solution of the problems in the problems related to the topic
• can describe on a qualitative level the basic principles of solving problems related to the subject area and justify the choices they have made related to solving problems
• identify the quantities related to the problems in a broad area, and their preservation or change
• knows how to choose the laws needed to solve problems
• Knows the limitations of the laws he uses
• knows how to solve computational problems by making good use of the laws of his choice
• knows how to state the solutions of computational problems with appropriate accuracy of presentation
• can justify the choices he made orally or in writing
• can reasonably assess the reasonableness, correctness and reliability of the calculated solutions he has made
• can implement and, if necessary, plan a simple measurement related to the topic and interpret the results obtained through the quantities and basic laws they have adopted.
Assessment scale
0-5
Enrolment period
01.12.2024 - 19.01.2025
Timing
01.01.2025 - 31.07.2025
Credits
5 op
Mode of delivery
Contact teaching
Unit
Construction Engineering
Campus
TAMK Main Campus
Teaching languages
- Finnish
Degree programmes
- Degree Programme in Construction Engineering
Teachers
- Anne Leppänen
Person in charge
Anne Leppänen
Groups
-
24RTA
Objectives (course unit)
In this course, you will learn the basics of the physics behind technology, the subject area being mechanics, thermophysics and electricity
As a student, you will
• know the basic objects and phenomena related to mechanics, thermophysics and electricity
• know how to connect objects and phenomena related to mechanics, thermophysics and electricity to technical and everyday practical applications
• know the quantities, their units, and the basic laws of physics between the quantities related to the basic elements and phenomena
• have a basic understanding about phenomena related to mechanics, thermophysics and electricity
• can describe the basic principles of solving problems related to mechanics, thermophysics and electricity on a qualitative level and justify the choices you make
• recognize the quantities related to the problems and their preservation or change
• know how to choose the laws needed to solve problems
• know the limitations of the laws used
• know how to solve quantitative problems by use of the physical laws
• know how to state the solutions of quantitative problems with appropriate accuracy of presentation
• can justify the choices you make orally or in writing
• know how to evaluate the reasonableness, correctness and reliability of the calculated solutions you have made
• can carry out a simple measurement related to mechanics, thermophysics and electricity and interpret the results you get
• can make and interpret graphical presentations
Content (course unit)
Mechanics
• Force, gravity, friction, interaction, effect of force on motion, Newton's laws
• Work, energy, conservation of energy, power, efficiency
• Basic movement models,
Thermal physics
• Temperature, temperature change and thermal expansion
• Thermal energy, basic concepts of thermodynamics of substances, changes of state, calorimetry
• Basic models of heat transfer
• Heat output of the flowing substance
Electricity
• ´Electric current, voltage, resistance, power, Ohm's law, electrical energy
Assessment criteria, satisfactory (1-2) (course unit)
Student:
• knows objects and phenomena related to the topic
• partially knows how to relate objects and phenomena related to the topic to technology and everyday applications
• knows the quantities related to the objects and phenomena of the subject area, the related units and the laws between the quantities only in familiar, exemplary situations.
• has a basic idea of the phenomena related to the subject area of insufficient qualitative level
• Recognizes the basic phenomena of physics appearing in problems related to the topic, the whole is partly unstructured and incomplete.
• can describe on a qualitative level some of the basic principles of solving problems related to the topic and makes his solutions as copies of previously studied examples.
• recognize, with support or based on a previous example, the quantities related to the problems and their preservation or change
• the selection of the laws needed to solve the problems is based on support or ready-made example models. Self-directed selection of models is uncertain and partly random.
• knows how to solve computational problems in situations that are, for example, familiar
• can sometimes state the solutions of computational problems with suitable accuracy of presentation
• the student has challenges justifying the choices he has made orally or in writing
• there are challenges in assessing the correctness and reliability of computational solutions.
• Works in the measurement related to the topic as part of a group
Assessment criteria, good (3-4) (course unit)
• knows the objects and phenomena related to the topic
• knows how to connect objects and phenomena related to the topic to technology and everyday applications
• knows the quantities related to the objects and phenomena of the topic, their units and the basic laws of physics between the quantities
• have a basic idea of the right qualitative level about the phenomena related to the topic
• can identify the basic phenomena of physics that are relevant to the solution of the problems in the problems related to the topic
• can describe on a qualitative level the basic principles of solving problems related to the subject area and justify the choices they have made related to solving problems
• identify the quantities related to problems and their preservation or change
• knows how to choose the laws needed to solve problems
• Knows the limitations of the laws he uses
• knows how to solve computational problems by making good use of the laws of his choice
• knows how to state the solutions of computational problems with appropriate accuracy of presentation
• can justify the choices he made orally or in writing
• knows how to evaluate the reasonableness, correctness and reliability of the calculated solutions he has made
• can carry out a simple measurement related to the topic and interpret the results obtained through the quantities and basic laws they have adopted
Assessment criteria, excellent (5) (course unit)
• knows the objects and phenomena related to the subject area and their connection to other subject areas
• knows how to comprehensively relate objects and phenomena related to the topic to technology and everyday applications
• thoroughly knows the quantities related to the objects and phenomena of the topic, their units and the basic laws of physics between the quantities and knows their limitations
• has a basic idea of the right qualitative level about the phenomena related to the topic and knows how to express it to others
• can identify the basic phenomena of physics that are relevant to the solution of the problems in the problems related to the topic
• can describe on a qualitative level the basic principles of solving problems related to the subject area and justify the choices they have made related to solving problems
• identify the quantities related to the problems in a broad area, and their preservation or change
• knows how to choose the laws needed to solve problems
• Knows the limitations of the laws he uses
• knows how to solve computational problems by making good use of the laws of his choice
• knows how to state the solutions of computational problems with appropriate accuracy of presentation
• can justify the choices he made orally or in writing
• can reasonably assess the reasonableness, correctness and reliability of the calculated solutions he has made
• can implement and, if necessary, plan a simple measurement related to the topic and interpret the results obtained through the quantities and basic laws they have adopted.
Assessment scale
0-5
Enrolment period
01.12.2024 - 19.01.2025
Timing
01.01.2025 - 31.07.2025
Credits
5 op
Mode of delivery
Contact teaching
Unit
Construction Engineering
Campus
TAMK Main Campus
Teaching languages
- Finnish
Degree programmes
- Degree Programme in Construction Engineering
Teachers
- Anne Leppänen
Person in charge
Anne Leppänen
Groups
-
24RTB
Objectives (course unit)
In this course, you will learn the basics of the physics behind technology, the subject area being mechanics, thermophysics and electricity
As a student, you will
• know the basic objects and phenomena related to mechanics, thermophysics and electricity
• know how to connect objects and phenomena related to mechanics, thermophysics and electricity to technical and everyday practical applications
• know the quantities, their units, and the basic laws of physics between the quantities related to the basic elements and phenomena
• have a basic understanding about phenomena related to mechanics, thermophysics and electricity
• can describe the basic principles of solving problems related to mechanics, thermophysics and electricity on a qualitative level and justify the choices you make
• recognize the quantities related to the problems and their preservation or change
• know how to choose the laws needed to solve problems
• know the limitations of the laws used
• know how to solve quantitative problems by use of the physical laws
• know how to state the solutions of quantitative problems with appropriate accuracy of presentation
• can justify the choices you make orally or in writing
• know how to evaluate the reasonableness, correctness and reliability of the calculated solutions you have made
• can carry out a simple measurement related to mechanics, thermophysics and electricity and interpret the results you get
• can make and interpret graphical presentations
Content (course unit)
Mechanics
• Force, gravity, friction, interaction, effect of force on motion, Newton's laws
• Work, energy, conservation of energy, power, efficiency
• Basic movement models,
Thermal physics
• Temperature, temperature change and thermal expansion
• Thermal energy, basic concepts of thermodynamics of substances, changes of state, calorimetry
• Basic models of heat transfer
• Heat output of the flowing substance
Electricity
• ´Electric current, voltage, resistance, power, Ohm's law, electrical energy
Assessment criteria, satisfactory (1-2) (course unit)
Student:
• knows objects and phenomena related to the topic
• partially knows how to relate objects and phenomena related to the topic to technology and everyday applications
• knows the quantities related to the objects and phenomena of the subject area, the related units and the laws between the quantities only in familiar, exemplary situations.
• has a basic idea of the phenomena related to the subject area of insufficient qualitative level
• Recognizes the basic phenomena of physics appearing in problems related to the topic, the whole is partly unstructured and incomplete.
• can describe on a qualitative level some of the basic principles of solving problems related to the topic and makes his solutions as copies of previously studied examples.
• recognize, with support or based on a previous example, the quantities related to the problems and their preservation or change
• the selection of the laws needed to solve the problems is based on support or ready-made example models. Self-directed selection of models is uncertain and partly random.
• knows how to solve computational problems in situations that are, for example, familiar
• can sometimes state the solutions of computational problems with suitable accuracy of presentation
• the student has challenges justifying the choices he has made orally or in writing
• there are challenges in assessing the correctness and reliability of computational solutions.
• Works in the measurement related to the topic as part of a group
Assessment criteria, good (3-4) (course unit)
• knows the objects and phenomena related to the topic
• knows how to connect objects and phenomena related to the topic to technology and everyday applications
• knows the quantities related to the objects and phenomena of the topic, their units and the basic laws of physics between the quantities
• have a basic idea of the right qualitative level about the phenomena related to the topic
• can identify the basic phenomena of physics that are relevant to the solution of the problems in the problems related to the topic
• can describe on a qualitative level the basic principles of solving problems related to the subject area and justify the choices they have made related to solving problems
• identify the quantities related to problems and their preservation or change
• knows how to choose the laws needed to solve problems
• Knows the limitations of the laws he uses
• knows how to solve computational problems by making good use of the laws of his choice
• knows how to state the solutions of computational problems with appropriate accuracy of presentation
• can justify the choices he made orally or in writing
• knows how to evaluate the reasonableness, correctness and reliability of the calculated solutions he has made
• can carry out a simple measurement related to the topic and interpret the results obtained through the quantities and basic laws they have adopted
Assessment criteria, excellent (5) (course unit)
• knows the objects and phenomena related to the subject area and their connection to other subject areas
• knows how to comprehensively relate objects and phenomena related to the topic to technology and everyday applications
• thoroughly knows the quantities related to the objects and phenomena of the topic, their units and the basic laws of physics between the quantities and knows their limitations
• has a basic idea of the right qualitative level about the phenomena related to the topic and knows how to express it to others
• can identify the basic phenomena of physics that are relevant to the solution of the problems in the problems related to the topic
• can describe on a qualitative level the basic principles of solving problems related to the subject area and justify the choices they have made related to solving problems
• identify the quantities related to the problems in a broad area, and their preservation or change
• knows how to choose the laws needed to solve problems
• Knows the limitations of the laws he uses
• knows how to solve computational problems by making good use of the laws of his choice
• knows how to state the solutions of computational problems with appropriate accuracy of presentation
• can justify the choices he made orally or in writing
• can reasonably assess the reasonableness, correctness and reliability of the calculated solutions he has made
• can implement and, if necessary, plan a simple measurement related to the topic and interpret the results obtained through the quantities and basic laws they have adopted.
Assessment scale
0-5
Enrolment period
01.12.2024 - 19.01.2025
Timing
01.01.2025 - 25.04.2025
Credits
5 op
Mode of delivery
Contact teaching
Unit
Construction Engineering
Campus
TAMK Main Campus
Teaching languages
- Finnish
Degree programmes
- Degree Programme in Construction Engineering
Teachers
- Tuomo Nieminen
Person in charge
Tuomo Nieminen
Groups
-
24RTC
Objectives (course unit)
In this course, you will learn the basics of the physics behind technology, the subject area being mechanics, thermophysics and electricity
As a student, you will
• know the basic objects and phenomena related to mechanics, thermophysics and electricity
• know how to connect objects and phenomena related to mechanics, thermophysics and electricity to technical and everyday practical applications
• know the quantities, their units, and the basic laws of physics between the quantities related to the basic elements and phenomena
• have a basic understanding about phenomena related to mechanics, thermophysics and electricity
• can describe the basic principles of solving problems related to mechanics, thermophysics and electricity on a qualitative level and justify the choices you make
• recognize the quantities related to the problems and their preservation or change
• know how to choose the laws needed to solve problems
• know the limitations of the laws used
• know how to solve quantitative problems by use of the physical laws
• know how to state the solutions of quantitative problems with appropriate accuracy of presentation
• can justify the choices you make orally or in writing
• know how to evaluate the reasonableness, correctness and reliability of the calculated solutions you have made
• can carry out a simple measurement related to mechanics, thermophysics and electricity and interpret the results you get
• can make and interpret graphical presentations
Content (course unit)
Mechanics
• Force, gravity, friction, interaction, effect of force on motion, Newton's laws
• Work, energy, conservation of energy, power, efficiency
• Basic movement models,
Thermal physics
• Temperature, temperature change and thermal expansion
• Thermal energy, basic concepts of thermodynamics of substances, changes of state, calorimetry
• Basic models of heat transfer
• Heat output of the flowing substance
Electricity
• ´Electric current, voltage, resistance, power, Ohm's law, electrical energy
Assessment criteria, satisfactory (1-2) (course unit)
Student:
• knows objects and phenomena related to the topic
• partially knows how to relate objects and phenomena related to the topic to technology and everyday applications
• knows the quantities related to the objects and phenomena of the subject area, the related units and the laws between the quantities only in familiar, exemplary situations.
• has a basic idea of the phenomena related to the subject area of insufficient qualitative level
• Recognizes the basic phenomena of physics appearing in problems related to the topic, the whole is partly unstructured and incomplete.
• can describe on a qualitative level some of the basic principles of solving problems related to the topic and makes his solutions as copies of previously studied examples.
• recognize, with support or based on a previous example, the quantities related to the problems and their preservation or change
• the selection of the laws needed to solve the problems is based on support or ready-made example models. Self-directed selection of models is uncertain and partly random.
• knows how to solve computational problems in situations that are, for example, familiar
• can sometimes state the solutions of computational problems with suitable accuracy of presentation
• the student has challenges justifying the choices he has made orally or in writing
• there are challenges in assessing the correctness and reliability of computational solutions.
• Works in the measurement related to the topic as part of a group
Assessment criteria, good (3-4) (course unit)
• knows the objects and phenomena related to the topic
• knows how to connect objects and phenomena related to the topic to technology and everyday applications
• knows the quantities related to the objects and phenomena of the topic, their units and the basic laws of physics between the quantities
• have a basic idea of the right qualitative level about the phenomena related to the topic
• can identify the basic phenomena of physics that are relevant to the solution of the problems in the problems related to the topic
• can describe on a qualitative level the basic principles of solving problems related to the subject area and justify the choices they have made related to solving problems
• identify the quantities related to problems and their preservation or change
• knows how to choose the laws needed to solve problems
• Knows the limitations of the laws he uses
• knows how to solve computational problems by making good use of the laws of his choice
• knows how to state the solutions of computational problems with appropriate accuracy of presentation
• can justify the choices he made orally or in writing
• knows how to evaluate the reasonableness, correctness and reliability of the calculated solutions he has made
• can carry out a simple measurement related to the topic and interpret the results obtained through the quantities and basic laws they have adopted
Assessment criteria, excellent (5) (course unit)
• knows the objects and phenomena related to the subject area and their connection to other subject areas
• knows how to comprehensively relate objects and phenomena related to the topic to technology and everyday applications
• thoroughly knows the quantities related to the objects and phenomena of the topic, their units and the basic laws of physics between the quantities and knows their limitations
• has a basic idea of the right qualitative level about the phenomena related to the topic and knows how to express it to others
• can identify the basic phenomena of physics that are relevant to the solution of the problems in the problems related to the topic
• can describe on a qualitative level the basic principles of solving problems related to the subject area and justify the choices they have made related to solving problems
• identify the quantities related to the problems in a broad area, and their preservation or change
• knows how to choose the laws needed to solve problems
• Knows the limitations of the laws he uses
• knows how to solve computational problems by making good use of the laws of his choice
• knows how to state the solutions of computational problems with appropriate accuracy of presentation
• can justify the choices he made orally or in writing
• can reasonably assess the reasonableness, correctness and reliability of the calculated solutions he has made
• can implement and, if necessary, plan a simple measurement related to the topic and interpret the results obtained through the quantities and basic laws they have adopted.
Assessment scale
0-5
Enrolment period
01.12.2024 - 19.01.2025
Timing
01.01.2025 - 25.04.2025
Credits
5 op
Mode of delivery
Contact teaching
Unit
Construction Engineering
Campus
TAMK Main Campus
Teaching languages
- Finnish
Degree programmes
- Degree Programme in Construction Engineering
Teachers
- Tuomo Nieminen
Person in charge
Tuomo Nieminen
Groups
-
24RTD
Objectives (course unit)
In this course, you will learn the basics of the physics behind technology, the subject area being mechanics, thermophysics and electricity
As a student, you will
• know the basic objects and phenomena related to mechanics, thermophysics and electricity
• know how to connect objects and phenomena related to mechanics, thermophysics and electricity to technical and everyday practical applications
• know the quantities, their units, and the basic laws of physics between the quantities related to the basic elements and phenomena
• have a basic understanding about phenomena related to mechanics, thermophysics and electricity
• can describe the basic principles of solving problems related to mechanics, thermophysics and electricity on a qualitative level and justify the choices you make
• recognize the quantities related to the problems and their preservation or change
• know how to choose the laws needed to solve problems
• know the limitations of the laws used
• know how to solve quantitative problems by use of the physical laws
• know how to state the solutions of quantitative problems with appropriate accuracy of presentation
• can justify the choices you make orally or in writing
• know how to evaluate the reasonableness, correctness and reliability of the calculated solutions you have made
• can carry out a simple measurement related to mechanics, thermophysics and electricity and interpret the results you get
• can make and interpret graphical presentations
Content (course unit)
Mechanics
• Force, gravity, friction, interaction, effect of force on motion, Newton's laws
• Work, energy, conservation of energy, power, efficiency
• Basic movement models,
Thermal physics
• Temperature, temperature change and thermal expansion
• Thermal energy, basic concepts of thermodynamics of substances, changes of state, calorimetry
• Basic models of heat transfer
• Heat output of the flowing substance
Electricity
• ´Electric current, voltage, resistance, power, Ohm's law, electrical energy
Assessment criteria, satisfactory (1-2) (course unit)
Student:
• knows objects and phenomena related to the topic
• partially knows how to relate objects and phenomena related to the topic to technology and everyday applications
• knows the quantities related to the objects and phenomena of the subject area, the related units and the laws between the quantities only in familiar, exemplary situations.
• has a basic idea of the phenomena related to the subject area of insufficient qualitative level
• Recognizes the basic phenomena of physics appearing in problems related to the topic, the whole is partly unstructured and incomplete.
• can describe on a qualitative level some of the basic principles of solving problems related to the topic and makes his solutions as copies of previously studied examples.
• recognize, with support or based on a previous example, the quantities related to the problems and their preservation or change
• the selection of the laws needed to solve the problems is based on support or ready-made example models. Self-directed selection of models is uncertain and partly random.
• knows how to solve computational problems in situations that are, for example, familiar
• can sometimes state the solutions of computational problems with suitable accuracy of presentation
• the student has challenges justifying the choices he has made orally or in writing
• there are challenges in assessing the correctness and reliability of computational solutions.
• Works in the measurement related to the topic as part of a group
Assessment criteria, good (3-4) (course unit)
• knows the objects and phenomena related to the topic
• knows how to connect objects and phenomena related to the topic to technology and everyday applications
• knows the quantities related to the objects and phenomena of the topic, their units and the basic laws of physics between the quantities
• have a basic idea of the right qualitative level about the phenomena related to the topic
• can identify the basic phenomena of physics that are relevant to the solution of the problems in the problems related to the topic
• can describe on a qualitative level the basic principles of solving problems related to the subject area and justify the choices they have made related to solving problems
• identify the quantities related to problems and their preservation or change
• knows how to choose the laws needed to solve problems
• Knows the limitations of the laws he uses
• knows how to solve computational problems by making good use of the laws of his choice
• knows how to state the solutions of computational problems with appropriate accuracy of presentation
• can justify the choices he made orally or in writing
• knows how to evaluate the reasonableness, correctness and reliability of the calculated solutions he has made
• can carry out a simple measurement related to the topic and interpret the results obtained through the quantities and basic laws they have adopted
Assessment criteria, excellent (5) (course unit)
• knows the objects and phenomena related to the subject area and their connection to other subject areas
• knows how to comprehensively relate objects and phenomena related to the topic to technology and everyday applications
• thoroughly knows the quantities related to the objects and phenomena of the topic, their units and the basic laws of physics between the quantities and knows their limitations
• has a basic idea of the right qualitative level about the phenomena related to the topic and knows how to express it to others
• can identify the basic phenomena of physics that are relevant to the solution of the problems in the problems related to the topic
• can describe on a qualitative level the basic principles of solving problems related to the subject area and justify the choices they have made related to solving problems
• identify the quantities related to the problems in a broad area, and their preservation or change
• knows how to choose the laws needed to solve problems
• Knows the limitations of the laws he uses
• knows how to solve computational problems by making good use of the laws of his choice
• knows how to state the solutions of computational problems with appropriate accuracy of presentation
• can justify the choices he made orally or in writing
• can reasonably assess the reasonableness, correctness and reliability of the calculated solutions he has made
• can implement and, if necessary, plan a simple measurement related to the topic and interpret the results obtained through the quantities and basic laws they have adopted.
Assessment scale
0-5
Enrolment period
18.11.2024 - 17.01.2025
Timing
01.01.2025 - 31.05.2025
Credits
5 op
Mode of delivery
Contact teaching
Unit
TAMK Mathematics and Physics
Campus
TAMK Main Campus
Teaching languages
- Finnish
Degree programmes
- Degree Programme in Mechanical Engineering
Teachers
- Jari Puranen
Person in charge
Jari Puranen
Groups
-
25AI112
Objectives (course unit)
In this course, you will learn the basics of the physics behind technology, the subject area being mechanics, thermophysics and electricity
As a student, you will
• know the basic objects and phenomena related to mechanics, thermophysics and electricity
• know how to connect objects and phenomena related to mechanics, thermophysics and electricity to technical and everyday practical applications
• know the quantities, their units, and the basic laws of physics between the quantities related to the basic elements and phenomena
• have a basic understanding about phenomena related to mechanics, thermophysics and electricity
• can describe the basic principles of solving problems related to mechanics, thermophysics and electricity on a qualitative level and justify the choices you make
• recognize the quantities related to the problems and their preservation or change
• know how to choose the laws needed to solve problems
• know the limitations of the laws used
• know how to solve quantitative problems by use of the physical laws
• know how to state the solutions of quantitative problems with appropriate accuracy of presentation
• can justify the choices you make orally or in writing
• know how to evaluate the reasonableness, correctness and reliability of the calculated solutions you have made
• can carry out a simple measurement related to mechanics, thermophysics and electricity and interpret the results you get
• can make and interpret graphical presentations
Content (course unit)
Mechanics
• Force, gravity, friction, interaction, effect of force on motion, Newton's laws
• Work, energy, conservation of energy, power, efficiency
• Basic movement models,
Thermal physics
• Temperature, temperature change and thermal expansion
• Thermal energy, basic concepts of thermodynamics of substances, changes of state, calorimetry
• Basic models of heat transfer
• Heat output of the flowing substance
Electricity
• ´Electric current, voltage, resistance, power, Ohm's law, electrical energy
Assessment criteria, satisfactory (1-2) (course unit)
Student:
• knows objects and phenomena related to the topic
• partially knows how to relate objects and phenomena related to the topic to technology and everyday applications
• knows the quantities related to the objects and phenomena of the subject area, the related units and the laws between the quantities only in familiar, exemplary situations.
• has a basic idea of the phenomena related to the subject area of insufficient qualitative level
• Recognizes the basic phenomena of physics appearing in problems related to the topic, the whole is partly unstructured and incomplete.
• can describe on a qualitative level some of the basic principles of solving problems related to the topic and makes his solutions as copies of previously studied examples.
• recognize, with support or based on a previous example, the quantities related to the problems and their preservation or change
• the selection of the laws needed to solve the problems is based on support or ready-made example models. Self-directed selection of models is uncertain and partly random.
• knows how to solve computational problems in situations that are, for example, familiar
• can sometimes state the solutions of computational problems with suitable accuracy of presentation
• the student has challenges justifying the choices he has made orally or in writing
• there are challenges in assessing the correctness and reliability of computational solutions.
• Works in the measurement related to the topic as part of a group
Assessment criteria, good (3-4) (course unit)
• knows the objects and phenomena related to the topic
• knows how to connect objects and phenomena related to the topic to technology and everyday applications
• knows the quantities related to the objects and phenomena of the topic, their units and the basic laws of physics between the quantities
• have a basic idea of the right qualitative level about the phenomena related to the topic
• can identify the basic phenomena of physics that are relevant to the solution of the problems in the problems related to the topic
• can describe on a qualitative level the basic principles of solving problems related to the subject area and justify the choices they have made related to solving problems
• identify the quantities related to problems and their preservation or change
• knows how to choose the laws needed to solve problems
• Knows the limitations of the laws he uses
• knows how to solve computational problems by making good use of the laws of his choice
• knows how to state the solutions of computational problems with appropriate accuracy of presentation
• can justify the choices he made orally or in writing
• knows how to evaluate the reasonableness, correctness and reliability of the calculated solutions he has made
• can carry out a simple measurement related to the topic and interpret the results obtained through the quantities and basic laws they have adopted
Assessment criteria, excellent (5) (course unit)
• knows the objects and phenomena related to the subject area and their connection to other subject areas
• knows how to comprehensively relate objects and phenomena related to the topic to technology and everyday applications
• thoroughly knows the quantities related to the objects and phenomena of the topic, their units and the basic laws of physics between the quantities and knows their limitations
• has a basic idea of the right qualitative level about the phenomena related to the topic and knows how to express it to others
• can identify the basic phenomena of physics that are relevant to the solution of the problems in the problems related to the topic
• can describe on a qualitative level the basic principles of solving problems related to the subject area and justify the choices they have made related to solving problems
• identify the quantities related to the problems in a broad area, and their preservation or change
• knows how to choose the laws needed to solve problems
• Knows the limitations of the laws he uses
• knows how to solve computational problems by making good use of the laws of his choice
• knows how to state the solutions of computational problems with appropriate accuracy of presentation
• can justify the choices he made orally or in writing
• can reasonably assess the reasonableness, correctness and reliability of the calculated solutions he has made
• can implement and, if necessary, plan a simple measurement related to the topic and interpret the results obtained through the quantities and basic laws they have adopted.
Assessment scale
0-5
Enrolment period
01.12.2024 - 19.01.2025
Timing
01.01.2025 - 31.05.2025
Credits
5 op
Mode of delivery
Contact teaching
Unit
TAMK Mathematics and Physics
Campus
TAMK Main Campus
Teaching languages
- Finnish
Degree programmes
- Degree Programme in Construction Engineering
Teachers
- Tuomo Nieminen
Person in charge
Petri Murtomaa
Groups
-
25AI351
Objectives (course unit)
In this course, you will learn the basics of the physics behind technology, the subject area being mechanics, thermophysics and electricity
As a student, you will
• know the basic objects and phenomena related to mechanics, thermophysics and electricity
• know how to connect objects and phenomena related to mechanics, thermophysics and electricity to technical and everyday practical applications
• know the quantities, their units, and the basic laws of physics between the quantities related to the basic elements and phenomena
• have a basic understanding about phenomena related to mechanics, thermophysics and electricity
• can describe the basic principles of solving problems related to mechanics, thermophysics and electricity on a qualitative level and justify the choices you make
• recognize the quantities related to the problems and their preservation or change
• know how to choose the laws needed to solve problems
• know the limitations of the laws used
• know how to solve quantitative problems by use of the physical laws
• know how to state the solutions of quantitative problems with appropriate accuracy of presentation
• can justify the choices you make orally or in writing
• know how to evaluate the reasonableness, correctness and reliability of the calculated solutions you have made
• can carry out a simple measurement related to mechanics, thermophysics and electricity and interpret the results you get
• can make and interpret graphical presentations
Content (course unit)
Mechanics
• Force, gravity, friction, interaction, effect of force on motion, Newton's laws
• Work, energy, conservation of energy, power, efficiency
• Basic movement models,
Thermal physics
• Temperature, temperature change and thermal expansion
• Thermal energy, basic concepts of thermodynamics of substances, changes of state, calorimetry
• Basic models of heat transfer
• Heat output of the flowing substance
Electricity
• ´Electric current, voltage, resistance, power, Ohm's law, electrical energy
Assessment criteria, satisfactory (1-2) (course unit)
Student:
• knows objects and phenomena related to the topic
• partially knows how to relate objects and phenomena related to the topic to technology and everyday applications
• knows the quantities related to the objects and phenomena of the subject area, the related units and the laws between the quantities only in familiar, exemplary situations.
• has a basic idea of the phenomena related to the subject area of insufficient qualitative level
• Recognizes the basic phenomena of physics appearing in problems related to the topic, the whole is partly unstructured and incomplete.
• can describe on a qualitative level some of the basic principles of solving problems related to the topic and makes his solutions as copies of previously studied examples.
• recognize, with support or based on a previous example, the quantities related to the problems and their preservation or change
• the selection of the laws needed to solve the problems is based on support or ready-made example models. Self-directed selection of models is uncertain and partly random.
• knows how to solve computational problems in situations that are, for example, familiar
• can sometimes state the solutions of computational problems with suitable accuracy of presentation
• the student has challenges justifying the choices he has made orally or in writing
• there are challenges in assessing the correctness and reliability of computational solutions.
• Works in the measurement related to the topic as part of a group
Assessment criteria, good (3-4) (course unit)
• knows the objects and phenomena related to the topic
• knows how to connect objects and phenomena related to the topic to technology and everyday applications
• knows the quantities related to the objects and phenomena of the topic, their units and the basic laws of physics between the quantities
• have a basic idea of the right qualitative level about the phenomena related to the topic
• can identify the basic phenomena of physics that are relevant to the solution of the problems in the problems related to the topic
• can describe on a qualitative level the basic principles of solving problems related to the subject area and justify the choices they have made related to solving problems
• identify the quantities related to problems and their preservation or change
• knows how to choose the laws needed to solve problems
• Knows the limitations of the laws he uses
• knows how to solve computational problems by making good use of the laws of his choice
• knows how to state the solutions of computational problems with appropriate accuracy of presentation
• can justify the choices he made orally or in writing
• knows how to evaluate the reasonableness, correctness and reliability of the calculated solutions he has made
• can carry out a simple measurement related to the topic and interpret the results obtained through the quantities and basic laws they have adopted
Assessment criteria, excellent (5) (course unit)
• knows the objects and phenomena related to the subject area and their connection to other subject areas
• knows how to comprehensively relate objects and phenomena related to the topic to technology and everyday applications
• thoroughly knows the quantities related to the objects and phenomena of the topic, their units and the basic laws of physics between the quantities and knows their limitations
• has a basic idea of the right qualitative level about the phenomena related to the topic and knows how to express it to others
• can identify the basic phenomena of physics that are relevant to the solution of the problems in the problems related to the topic
• can describe on a qualitative level the basic principles of solving problems related to the subject area and justify the choices they have made related to solving problems
• identify the quantities related to the problems in a broad area, and their preservation or change
• knows how to choose the laws needed to solve problems
• Knows the limitations of the laws he uses
• knows how to solve computational problems by making good use of the laws of his choice
• knows how to state the solutions of computational problems with appropriate accuracy of presentation
• can justify the choices he made orally or in writing
• can reasonably assess the reasonableness, correctness and reliability of the calculated solutions he has made
• can implement and, if necessary, plan a simple measurement related to the topic and interpret the results obtained through the quantities and basic laws they have adopted.
Assessment scale
0-5
Enrolment period
02.12.2024 - 17.01.2025
Timing
01.01.2025 - 31.07.2025
Credits
5 op
Mode of delivery
Contact teaching
Unit
TAMK Mathematics and Physics
Campus
TAMK Main Campus
Teaching languages
- Finnish
Degree programmes
- Degree Programme in Building Services Engineering, HVAC Systems
Teachers
- Noora Erkkilä
Person in charge
Noora Erkkilä
Groups
-
25AI253
Objectives (course unit)
In this course, you will learn the basics of the physics behind technology, the subject area being mechanics, thermophysics and electricity
As a student, you will
• know the basic objects and phenomena related to mechanics, thermophysics and electricity
• know how to connect objects and phenomena related to mechanics, thermophysics and electricity to technical and everyday practical applications
• know the quantities, their units, and the basic laws of physics between the quantities related to the basic elements and phenomena
• have a basic understanding about phenomena related to mechanics, thermophysics and electricity
• can describe the basic principles of solving problems related to mechanics, thermophysics and electricity on a qualitative level and justify the choices you make
• recognize the quantities related to the problems and their preservation or change
• know how to choose the laws needed to solve problems
• know the limitations of the laws used
• know how to solve quantitative problems by use of the physical laws
• know how to state the solutions of quantitative problems with appropriate accuracy of presentation
• can justify the choices you make orally or in writing
• know how to evaluate the reasonableness, correctness and reliability of the calculated solutions you have made
• can carry out a simple measurement related to mechanics, thermophysics and electricity and interpret the results you get
• can make and interpret graphical presentations
Content (course unit)
Mechanics
• Force, gravity, friction, interaction, effect of force on motion, Newton's laws
• Work, energy, conservation of energy, power, efficiency
• Basic movement models,
Thermal physics
• Temperature, temperature change and thermal expansion
• Thermal energy, basic concepts of thermodynamics of substances, changes of state, calorimetry
• Basic models of heat transfer
• Heat output of the flowing substance
Electricity
• ´Electric current, voltage, resistance, power, Ohm's law, electrical energy
Assessment criteria, satisfactory (1-2) (course unit)
Student:
• knows objects and phenomena related to the topic
• partially knows how to relate objects and phenomena related to the topic to technology and everyday applications
• knows the quantities related to the objects and phenomena of the subject area, the related units and the laws between the quantities only in familiar, exemplary situations.
• has a basic idea of the phenomena related to the subject area of insufficient qualitative level
• Recognizes the basic phenomena of physics appearing in problems related to the topic, the whole is partly unstructured and incomplete.
• can describe on a qualitative level some of the basic principles of solving problems related to the topic and makes his solutions as copies of previously studied examples.
• recognize, with support or based on a previous example, the quantities related to the problems and their preservation or change
• the selection of the laws needed to solve the problems is based on support or ready-made example models. Self-directed selection of models is uncertain and partly random.
• knows how to solve computational problems in situations that are, for example, familiar
• can sometimes state the solutions of computational problems with suitable accuracy of presentation
• the student has challenges justifying the choices he has made orally or in writing
• there are challenges in assessing the correctness and reliability of computational solutions.
• Works in the measurement related to the topic as part of a group
Assessment criteria, good (3-4) (course unit)
• knows the objects and phenomena related to the topic
• knows how to connect objects and phenomena related to the topic to technology and everyday applications
• knows the quantities related to the objects and phenomena of the topic, their units and the basic laws of physics between the quantities
• have a basic idea of the right qualitative level about the phenomena related to the topic
• can identify the basic phenomena of physics that are relevant to the solution of the problems in the problems related to the topic
• can describe on a qualitative level the basic principles of solving problems related to the subject area and justify the choices they have made related to solving problems
• identify the quantities related to problems and their preservation or change
• knows how to choose the laws needed to solve problems
• Knows the limitations of the laws he uses
• knows how to solve computational problems by making good use of the laws of his choice
• knows how to state the solutions of computational problems with appropriate accuracy of presentation
• can justify the choices he made orally or in writing
• knows how to evaluate the reasonableness, correctness and reliability of the calculated solutions he has made
• can carry out a simple measurement related to the topic and interpret the results obtained through the quantities and basic laws they have adopted
Assessment criteria, excellent (5) (course unit)
• knows the objects and phenomena related to the subject area and their connection to other subject areas
• knows how to comprehensively relate objects and phenomena related to the topic to technology and everyday applications
• thoroughly knows the quantities related to the objects and phenomena of the topic, their units and the basic laws of physics between the quantities and knows their limitations
• has a basic idea of the right qualitative level about the phenomena related to the topic and knows how to express it to others
• can identify the basic phenomena of physics that are relevant to the solution of the problems in the problems related to the topic
• can describe on a qualitative level the basic principles of solving problems related to the subject area and justify the choices they have made related to solving problems
• identify the quantities related to the problems in a broad area, and their preservation or change
• knows how to choose the laws needed to solve problems
• Knows the limitations of the laws he uses
• knows how to solve computational problems by making good use of the laws of his choice
• knows how to state the solutions of computational problems with appropriate accuracy of presentation
• can justify the choices he made orally or in writing
• can reasonably assess the reasonableness, correctness and reliability of the calculated solutions he has made
• can implement and, if necessary, plan a simple measurement related to the topic and interpret the results obtained through the quantities and basic laws they have adopted.
Assessment scale
0-5
Enrolment period
02.12.2024 - 10.01.2025
Timing
01.01.2025 - 31.07.2025
Credits
5 op
Mode of delivery
Contact teaching
Unit
TAMK Mathematics and Physics
Campus
TAMK Main Campus
Teaching languages
- Finnish
Degree programmes
- Degree Programme in Building Services Engineering, Electrical Systems
Teachers
- Noora Erkkilä
Person in charge
Noora Erkkilä
Groups
-
25AI254
Objectives (course unit)
In this course, you will learn the basics of the physics behind technology, the subject area being mechanics, thermophysics and electricity
As a student, you will
• know the basic objects and phenomena related to mechanics, thermophysics and electricity
• know how to connect objects and phenomena related to mechanics, thermophysics and electricity to technical and everyday practical applications
• know the quantities, their units, and the basic laws of physics between the quantities related to the basic elements and phenomena
• have a basic understanding about phenomena related to mechanics, thermophysics and electricity
• can describe the basic principles of solving problems related to mechanics, thermophysics and electricity on a qualitative level and justify the choices you make
• recognize the quantities related to the problems and their preservation or change
• know how to choose the laws needed to solve problems
• know the limitations of the laws used
• know how to solve quantitative problems by use of the physical laws
• know how to state the solutions of quantitative problems with appropriate accuracy of presentation
• can justify the choices you make orally or in writing
• know how to evaluate the reasonableness, correctness and reliability of the calculated solutions you have made
• can carry out a simple measurement related to mechanics, thermophysics and electricity and interpret the results you get
• can make and interpret graphical presentations
Content (course unit)
Mechanics
• Force, gravity, friction, interaction, effect of force on motion, Newton's laws
• Work, energy, conservation of energy, power, efficiency
• Basic movement models,
Thermal physics
• Temperature, temperature change and thermal expansion
• Thermal energy, basic concepts of thermodynamics of substances, changes of state, calorimetry
• Basic models of heat transfer
• Heat output of the flowing substance
Electricity
• ´Electric current, voltage, resistance, power, Ohm's law, electrical energy
Assessment criteria, satisfactory (1-2) (course unit)
Student:
• knows objects and phenomena related to the topic
• partially knows how to relate objects and phenomena related to the topic to technology and everyday applications
• knows the quantities related to the objects and phenomena of the subject area, the related units and the laws between the quantities only in familiar, exemplary situations.
• has a basic idea of the phenomena related to the subject area of insufficient qualitative level
• Recognizes the basic phenomena of physics appearing in problems related to the topic, the whole is partly unstructured and incomplete.
• can describe on a qualitative level some of the basic principles of solving problems related to the topic and makes his solutions as copies of previously studied examples.
• recognize, with support or based on a previous example, the quantities related to the problems and their preservation or change
• the selection of the laws needed to solve the problems is based on support or ready-made example models. Self-directed selection of models is uncertain and partly random.
• knows how to solve computational problems in situations that are, for example, familiar
• can sometimes state the solutions of computational problems with suitable accuracy of presentation
• the student has challenges justifying the choices he has made orally or in writing
• there are challenges in assessing the correctness and reliability of computational solutions.
• Works in the measurement related to the topic as part of a group
Assessment criteria, good (3-4) (course unit)
• knows the objects and phenomena related to the topic
• knows how to connect objects and phenomena related to the topic to technology and everyday applications
• knows the quantities related to the objects and phenomena of the topic, their units and the basic laws of physics between the quantities
• have a basic idea of the right qualitative level about the phenomena related to the topic
• can identify the basic phenomena of physics that are relevant to the solution of the problems in the problems related to the topic
• can describe on a qualitative level the basic principles of solving problems related to the subject area and justify the choices they have made related to solving problems
• identify the quantities related to problems and their preservation or change
• knows how to choose the laws needed to solve problems
• Knows the limitations of the laws he uses
• knows how to solve computational problems by making good use of the laws of his choice
• knows how to state the solutions of computational problems with appropriate accuracy of presentation
• can justify the choices he made orally or in writing
• knows how to evaluate the reasonableness, correctness and reliability of the calculated solutions he has made
• can carry out a simple measurement related to the topic and interpret the results obtained through the quantities and basic laws they have adopted
Assessment criteria, excellent (5) (course unit)
• knows the objects and phenomena related to the subject area and their connection to other subject areas
• knows how to comprehensively relate objects and phenomena related to the topic to technology and everyday applications
• thoroughly knows the quantities related to the objects and phenomena of the topic, their units and the basic laws of physics between the quantities and knows their limitations
• has a basic idea of the right qualitative level about the phenomena related to the topic and knows how to express it to others
• can identify the basic phenomena of physics that are relevant to the solution of the problems in the problems related to the topic
• can describe on a qualitative level the basic principles of solving problems related to the subject area and justify the choices they have made related to solving problems
• identify the quantities related to the problems in a broad area, and their preservation or change
• knows how to choose the laws needed to solve problems
• Knows the limitations of the laws he uses
• knows how to solve computational problems by making good use of the laws of his choice
• knows how to state the solutions of computational problems with appropriate accuracy of presentation
• can justify the choices he made orally or in writing
• can reasonably assess the reasonableness, correctness and reliability of the calculated solutions he has made
• can implement and, if necessary, plan a simple measurement related to the topic and interpret the results obtained through the quantities and basic laws they have adopted.
Assessment scale
0-5
Enrolment period
04.07.2024 - 08.09.2024
Timing
09.09.2024 - 15.12.2024
Credits
5 op
Virtual portion
5 op
Mode of delivery
Online learning
Unit
TAMK Mathematics and Physics
Campus
TAMK Main Campus
Teaching languages
- Finnish
Seats
0 - 80
Teachers
- Reijo Manninen
- Tuomo Nieminen
Groups
-
AVOINAMK
-
24CAMPUSONLINECAMPUSONLINE
-
VAPAA
Objectives (course unit)
In this course, you will learn the basics of the physics behind technology, the subject area being mechanics, thermophysics and electricity
As a student, you will
• know the basic objects and phenomena related to mechanics, thermophysics and electricity
• know how to connect objects and phenomena related to mechanics, thermophysics and electricity to technical and everyday practical applications
• know the quantities, their units, and the basic laws of physics between the quantities related to the basic elements and phenomena
• have a basic understanding about phenomena related to mechanics, thermophysics and electricity
• can describe the basic principles of solving problems related to mechanics, thermophysics and electricity on a qualitative level and justify the choices you make
• recognize the quantities related to the problems and their preservation or change
• know how to choose the laws needed to solve problems
• know the limitations of the laws used
• know how to solve quantitative problems by use of the physical laws
• know how to state the solutions of quantitative problems with appropriate accuracy of presentation
• can justify the choices you make orally or in writing
• know how to evaluate the reasonableness, correctness and reliability of the calculated solutions you have made
• can carry out a simple measurement related to mechanics, thermophysics and electricity and interpret the results you get
• can make and interpret graphical presentations
Content (course unit)
Mechanics
• Force, gravity, friction, interaction, effect of force on motion, Newton's laws
• Work, energy, conservation of energy, power, efficiency
• Basic movement models,
Thermal physics
• Temperature, temperature change and thermal expansion
• Thermal energy, basic concepts of thermodynamics of substances, changes of state, calorimetry
• Basic models of heat transfer
• Heat output of the flowing substance
Electricity
• ´Electric current, voltage, resistance, power, Ohm's law, electrical energy
Assessment criteria, satisfactory (1-2) (course unit)
Student:
• knows objects and phenomena related to the topic
• partially knows how to relate objects and phenomena related to the topic to technology and everyday applications
• knows the quantities related to the objects and phenomena of the subject area, the related units and the laws between the quantities only in familiar, exemplary situations.
• has a basic idea of the phenomena related to the subject area of insufficient qualitative level
• Recognizes the basic phenomena of physics appearing in problems related to the topic, the whole is partly unstructured and incomplete.
• can describe on a qualitative level some of the basic principles of solving problems related to the topic and makes his solutions as copies of previously studied examples.
• recognize, with support or based on a previous example, the quantities related to the problems and their preservation or change
• the selection of the laws needed to solve the problems is based on support or ready-made example models. Self-directed selection of models is uncertain and partly random.
• knows how to solve computational problems in situations that are, for example, familiar
• can sometimes state the solutions of computational problems with suitable accuracy of presentation
• the student has challenges justifying the choices he has made orally or in writing
• there are challenges in assessing the correctness and reliability of computational solutions.
• Works in the measurement related to the topic as part of a group
Assessment criteria, good (3-4) (course unit)
• knows the objects and phenomena related to the topic
• knows how to connect objects and phenomena related to the topic to technology and everyday applications
• knows the quantities related to the objects and phenomena of the topic, their units and the basic laws of physics between the quantities
• have a basic idea of the right qualitative level about the phenomena related to the topic
• can identify the basic phenomena of physics that are relevant to the solution of the problems in the problems related to the topic
• can describe on a qualitative level the basic principles of solving problems related to the subject area and justify the choices they have made related to solving problems
• identify the quantities related to problems and their preservation or change
• knows how to choose the laws needed to solve problems
• Knows the limitations of the laws he uses
• knows how to solve computational problems by making good use of the laws of his choice
• knows how to state the solutions of computational problems with appropriate accuracy of presentation
• can justify the choices he made orally or in writing
• knows how to evaluate the reasonableness, correctness and reliability of the calculated solutions he has made
• can carry out a simple measurement related to the topic and interpret the results obtained through the quantities and basic laws they have adopted
Assessment criteria, excellent (5) (course unit)
• knows the objects and phenomena related to the subject area and their connection to other subject areas
• knows how to comprehensively relate objects and phenomena related to the topic to technology and everyday applications
• thoroughly knows the quantities related to the objects and phenomena of the topic, their units and the basic laws of physics between the quantities and knows their limitations
• has a basic idea of the right qualitative level about the phenomena related to the topic and knows how to express it to others
• can identify the basic phenomena of physics that are relevant to the solution of the problems in the problems related to the topic
• can describe on a qualitative level the basic principles of solving problems related to the subject area and justify the choices they have made related to solving problems
• identify the quantities related to the problems in a broad area, and their preservation or change
• knows how to choose the laws needed to solve problems
• Knows the limitations of the laws he uses
• knows how to solve computational problems by making good use of the laws of his choice
• knows how to state the solutions of computational problems with appropriate accuracy of presentation
• can justify the choices he made orally or in writing
• can reasonably assess the reasonableness, correctness and reliability of the calculated solutions he has made
• can implement and, if necessary, plan a simple measurement related to the topic and interpret the results obtained through the quantities and basic laws they have adopted.
Assessment scale
0-5
Enrolment period
02.07.2024 - 11.09.2024
Timing
05.09.2024 - 12.12.2024
Credits
5 op
Mode of delivery
Contact teaching
Unit
TAMK Mathematics and Physics
Campus
TAMK Main Campus
Teaching languages
- Finnish
Degree programmes
- Degree Programme in Building Services Engineering, Electrical Systems
Teachers
- Roope Siikanen
Person in charge
Aki Kortetmäki
Groups
-
24I254
Objectives (course unit)
In this course, you will learn the basics of the physics behind technology, the subject area being mechanics, thermophysics and electricity
As a student, you will
• know the basic objects and phenomena related to mechanics, thermophysics and electricity
• know how to connect objects and phenomena related to mechanics, thermophysics and electricity to technical and everyday practical applications
• know the quantities, their units, and the basic laws of physics between the quantities related to the basic elements and phenomena
• have a basic understanding about phenomena related to mechanics, thermophysics and electricity
• can describe the basic principles of solving problems related to mechanics, thermophysics and electricity on a qualitative level and justify the choices you make
• recognize the quantities related to the problems and their preservation or change
• know how to choose the laws needed to solve problems
• know the limitations of the laws used
• know how to solve quantitative problems by use of the physical laws
• know how to state the solutions of quantitative problems with appropriate accuracy of presentation
• can justify the choices you make orally or in writing
• know how to evaluate the reasonableness, correctness and reliability of the calculated solutions you have made
• can carry out a simple measurement related to mechanics, thermophysics and electricity and interpret the results you get
• can make and interpret graphical presentations
Content (course unit)
Mechanics
• Force, gravity, friction, interaction, effect of force on motion, Newton's laws
• Work, energy, conservation of energy, power, efficiency
• Basic movement models,
Thermal physics
• Temperature, temperature change and thermal expansion
• Thermal energy, basic concepts of thermodynamics of substances, changes of state, calorimetry
• Basic models of heat transfer
• Heat output of the flowing substance
Electricity
• ´Electric current, voltage, resistance, power, Ohm's law, electrical energy
Assessment criteria, satisfactory (1-2) (course unit)
Student:
• knows objects and phenomena related to the topic
• partially knows how to relate objects and phenomena related to the topic to technology and everyday applications
• knows the quantities related to the objects and phenomena of the subject area, the related units and the laws between the quantities only in familiar, exemplary situations.
• has a basic idea of the phenomena related to the subject area of insufficient qualitative level
• Recognizes the basic phenomena of physics appearing in problems related to the topic, the whole is partly unstructured and incomplete.
• can describe on a qualitative level some of the basic principles of solving problems related to the topic and makes his solutions as copies of previously studied examples.
• recognize, with support or based on a previous example, the quantities related to the problems and their preservation or change
• the selection of the laws needed to solve the problems is based on support or ready-made example models. Self-directed selection of models is uncertain and partly random.
• knows how to solve computational problems in situations that are, for example, familiar
• can sometimes state the solutions of computational problems with suitable accuracy of presentation
• the student has challenges justifying the choices he has made orally or in writing
• there are challenges in assessing the correctness and reliability of computational solutions.
• Works in the measurement related to the topic as part of a group
Assessment criteria, good (3-4) (course unit)
• knows the objects and phenomena related to the topic
• knows how to connect objects and phenomena related to the topic to technology and everyday applications
• knows the quantities related to the objects and phenomena of the topic, their units and the basic laws of physics between the quantities
• have a basic idea of the right qualitative level about the phenomena related to the topic
• can identify the basic phenomena of physics that are relevant to the solution of the problems in the problems related to the topic
• can describe on a qualitative level the basic principles of solving problems related to the subject area and justify the choices they have made related to solving problems
• identify the quantities related to problems and their preservation or change
• knows how to choose the laws needed to solve problems
• Knows the limitations of the laws he uses
• knows how to solve computational problems by making good use of the laws of his choice
• knows how to state the solutions of computational problems with appropriate accuracy of presentation
• can justify the choices he made orally or in writing
• knows how to evaluate the reasonableness, correctness and reliability of the calculated solutions he has made
• can carry out a simple measurement related to the topic and interpret the results obtained through the quantities and basic laws they have adopted
Assessment criteria, excellent (5) (course unit)
• knows the objects and phenomena related to the subject area and their connection to other subject areas
• knows how to comprehensively relate objects and phenomena related to the topic to technology and everyday applications
• thoroughly knows the quantities related to the objects and phenomena of the topic, their units and the basic laws of physics between the quantities and knows their limitations
• has a basic idea of the right qualitative level about the phenomena related to the topic and knows how to express it to others
• can identify the basic phenomena of physics that are relevant to the solution of the problems in the problems related to the topic
• can describe on a qualitative level the basic principles of solving problems related to the subject area and justify the choices they have made related to solving problems
• identify the quantities related to the problems in a broad area, and their preservation or change
• knows how to choose the laws needed to solve problems
• Knows the limitations of the laws he uses
• knows how to solve computational problems by making good use of the laws of his choice
• knows how to state the solutions of computational problems with appropriate accuracy of presentation
• can justify the choices he made orally or in writing
• can reasonably assess the reasonableness, correctness and reliability of the calculated solutions he has made
• can implement and, if necessary, plan a simple measurement related to the topic and interpret the results obtained through the quantities and basic laws they have adopted.
Assessment scale
0-5
Enrolment period
02.07.2024 - 11.09.2024
Timing
04.09.2024 - 16.12.2024
Credits
5 op
Mode of delivery
Contact teaching
Unit
TAMK Mathematics and Physics
Campus
TAMK Main Campus
Teaching languages
- Finnish
Degree programmes
- Degree Programme in Building Services Engineering, HVAC Systems
Teachers
- Roope Siikanen
Person in charge
Antti Mäkinen
Groups
-
24I253
Objectives (course unit)
In this course, you will learn the basics of the physics behind technology, the subject area being mechanics, thermophysics and electricity
As a student, you will
• know the basic objects and phenomena related to mechanics, thermophysics and electricity
• know how to connect objects and phenomena related to mechanics, thermophysics and electricity to technical and everyday practical applications
• know the quantities, their units, and the basic laws of physics between the quantities related to the basic elements and phenomena
• have a basic understanding about phenomena related to mechanics, thermophysics and electricity
• can describe the basic principles of solving problems related to mechanics, thermophysics and electricity on a qualitative level and justify the choices you make
• recognize the quantities related to the problems and their preservation or change
• know how to choose the laws needed to solve problems
• know the limitations of the laws used
• know how to solve quantitative problems by use of the physical laws
• know how to state the solutions of quantitative problems with appropriate accuracy of presentation
• can justify the choices you make orally or in writing
• know how to evaluate the reasonableness, correctness and reliability of the calculated solutions you have made
• can carry out a simple measurement related to mechanics, thermophysics and electricity and interpret the results you get
• can make and interpret graphical presentations
Content (course unit)
Mechanics
• Force, gravity, friction, interaction, effect of force on motion, Newton's laws
• Work, energy, conservation of energy, power, efficiency
• Basic movement models,
Thermal physics
• Temperature, temperature change and thermal expansion
• Thermal energy, basic concepts of thermodynamics of substances, changes of state, calorimetry
• Basic models of heat transfer
• Heat output of the flowing substance
Electricity
• ´Electric current, voltage, resistance, power, Ohm's law, electrical energy
Assessment criteria, satisfactory (1-2) (course unit)
Student:
• knows objects and phenomena related to the topic
• partially knows how to relate objects and phenomena related to the topic to technology and everyday applications
• knows the quantities related to the objects and phenomena of the subject area, the related units and the laws between the quantities only in familiar, exemplary situations.
• has a basic idea of the phenomena related to the subject area of insufficient qualitative level
• Recognizes the basic phenomena of physics appearing in problems related to the topic, the whole is partly unstructured and incomplete.
• can describe on a qualitative level some of the basic principles of solving problems related to the topic and makes his solutions as copies of previously studied examples.
• recognize, with support or based on a previous example, the quantities related to the problems and their preservation or change
• the selection of the laws needed to solve the problems is based on support or ready-made example models. Self-directed selection of models is uncertain and partly random.
• knows how to solve computational problems in situations that are, for example, familiar
• can sometimes state the solutions of computational problems with suitable accuracy of presentation
• the student has challenges justifying the choices he has made orally or in writing
• there are challenges in assessing the correctness and reliability of computational solutions.
• Works in the measurement related to the topic as part of a group
Assessment criteria, good (3-4) (course unit)
• knows the objects and phenomena related to the topic
• knows how to connect objects and phenomena related to the topic to technology and everyday applications
• knows the quantities related to the objects and phenomena of the topic, their units and the basic laws of physics between the quantities
• have a basic idea of the right qualitative level about the phenomena related to the topic
• can identify the basic phenomena of physics that are relevant to the solution of the problems in the problems related to the topic
• can describe on a qualitative level the basic principles of solving problems related to the subject area and justify the choices they have made related to solving problems
• identify the quantities related to problems and their preservation or change
• knows how to choose the laws needed to solve problems
• Knows the limitations of the laws he uses
• knows how to solve computational problems by making good use of the laws of his choice
• knows how to state the solutions of computational problems with appropriate accuracy of presentation
• can justify the choices he made orally or in writing
• knows how to evaluate the reasonableness, correctness and reliability of the calculated solutions he has made
• can carry out a simple measurement related to the topic and interpret the results obtained through the quantities and basic laws they have adopted
Assessment criteria, excellent (5) (course unit)
• knows the objects and phenomena related to the subject area and their connection to other subject areas
• knows how to comprehensively relate objects and phenomena related to the topic to technology and everyday applications
• thoroughly knows the quantities related to the objects and phenomena of the topic, their units and the basic laws of physics between the quantities and knows their limitations
• has a basic idea of the right qualitative level about the phenomena related to the topic and knows how to express it to others
• can identify the basic phenomena of physics that are relevant to the solution of the problems in the problems related to the topic
• can describe on a qualitative level the basic principles of solving problems related to the subject area and justify the choices they have made related to solving problems
• identify the quantities related to the problems in a broad area, and their preservation or change
• knows how to choose the laws needed to solve problems
• Knows the limitations of the laws he uses
• knows how to solve computational problems by making good use of the laws of his choice
• knows how to state the solutions of computational problems with appropriate accuracy of presentation
• can justify the choices he made orally or in writing
• can reasonably assess the reasonableness, correctness and reliability of the calculated solutions he has made
• can implement and, if necessary, plan a simple measurement related to the topic and interpret the results obtained through the quantities and basic laws they have adopted.
Assessment scale
0-5
Enrolment period
12.08.2024 - 09.09.2024
Timing
02.09.2024 - 13.12.2024
Credits
5 op
Mode of delivery
Contact teaching
Unit
TAMK Mathematics and Physics
Campus
TAMK Main Campus
Teaching languages
- Finnish
Degree programmes
- Degree Programme in Vehicle Engineering
Teachers
- Tuomo Nieminen
Groups
-
24AUTOA
Objectives (course unit)
In this course, you will learn the basics of the physics behind technology, the subject area being mechanics, thermophysics and electricity
As a student, you will
• know the basic objects and phenomena related to mechanics, thermophysics and electricity
• know how to connect objects and phenomena related to mechanics, thermophysics and electricity to technical and everyday practical applications
• know the quantities, their units, and the basic laws of physics between the quantities related to the basic elements and phenomena
• have a basic understanding about phenomena related to mechanics, thermophysics and electricity
• can describe the basic principles of solving problems related to mechanics, thermophysics and electricity on a qualitative level and justify the choices you make
• recognize the quantities related to the problems and their preservation or change
• know how to choose the laws needed to solve problems
• know the limitations of the laws used
• know how to solve quantitative problems by use of the physical laws
• know how to state the solutions of quantitative problems with appropriate accuracy of presentation
• can justify the choices you make orally or in writing
• know how to evaluate the reasonableness, correctness and reliability of the calculated solutions you have made
• can carry out a simple measurement related to mechanics, thermophysics and electricity and interpret the results you get
• can make and interpret graphical presentations
Content (course unit)
Mechanics
• Force, gravity, friction, interaction, effect of force on motion, Newton's laws
• Work, energy, conservation of energy, power, efficiency
• Basic movement models,
Thermal physics
• Temperature, temperature change and thermal expansion
• Thermal energy, basic concepts of thermodynamics of substances, changes of state, calorimetry
• Basic models of heat transfer
• Heat output of the flowing substance
Electricity
• ´Electric current, voltage, resistance, power, Ohm's law, electrical energy
Assessment criteria, satisfactory (1-2) (course unit)
Student:
• knows objects and phenomena related to the topic
• partially knows how to relate objects and phenomena related to the topic to technology and everyday applications
• knows the quantities related to the objects and phenomena of the subject area, the related units and the laws between the quantities only in familiar, exemplary situations.
• has a basic idea of the phenomena related to the subject area of insufficient qualitative level
• Recognizes the basic phenomena of physics appearing in problems related to the topic, the whole is partly unstructured and incomplete.
• can describe on a qualitative level some of the basic principles of solving problems related to the topic and makes his solutions as copies of previously studied examples.
• recognize, with support or based on a previous example, the quantities related to the problems and their preservation or change
• the selection of the laws needed to solve the problems is based on support or ready-made example models. Self-directed selection of models is uncertain and partly random.
• knows how to solve computational problems in situations that are, for example, familiar
• can sometimes state the solutions of computational problems with suitable accuracy of presentation
• the student has challenges justifying the choices he has made orally or in writing
• there are challenges in assessing the correctness and reliability of computational solutions.
• Works in the measurement related to the topic as part of a group
Assessment criteria, good (3-4) (course unit)
• knows the objects and phenomena related to the topic
• knows how to connect objects and phenomena related to the topic to technology and everyday applications
• knows the quantities related to the objects and phenomena of the topic, their units and the basic laws of physics between the quantities
• have a basic idea of the right qualitative level about the phenomena related to the topic
• can identify the basic phenomena of physics that are relevant to the solution of the problems in the problems related to the topic
• can describe on a qualitative level the basic principles of solving problems related to the subject area and justify the choices they have made related to solving problems
• identify the quantities related to problems and their preservation or change
• knows how to choose the laws needed to solve problems
• Knows the limitations of the laws he uses
• knows how to solve computational problems by making good use of the laws of his choice
• knows how to state the solutions of computational problems with appropriate accuracy of presentation
• can justify the choices he made orally or in writing
• knows how to evaluate the reasonableness, correctness and reliability of the calculated solutions he has made
• can carry out a simple measurement related to the topic and interpret the results obtained through the quantities and basic laws they have adopted
Assessment criteria, excellent (5) (course unit)
• knows the objects and phenomena related to the subject area and their connection to other subject areas
• knows how to comprehensively relate objects and phenomena related to the topic to technology and everyday applications
• thoroughly knows the quantities related to the objects and phenomena of the topic, their units and the basic laws of physics between the quantities and knows their limitations
• has a basic idea of the right qualitative level about the phenomena related to the topic and knows how to express it to others
• can identify the basic phenomena of physics that are relevant to the solution of the problems in the problems related to the topic
• can describe on a qualitative level the basic principles of solving problems related to the subject area and justify the choices they have made related to solving problems
• identify the quantities related to the problems in a broad area, and their preservation or change
• knows how to choose the laws needed to solve problems
• Knows the limitations of the laws he uses
• knows how to solve computational problems by making good use of the laws of his choice
• knows how to state the solutions of computational problems with appropriate accuracy of presentation
• can justify the choices he made orally or in writing
• can reasonably assess the reasonableness, correctness and reliability of the calculated solutions he has made
• can implement and, if necessary, plan a simple measurement related to the topic and interpret the results obtained through the quantities and basic laws they have adopted.
Assessment scale
0-5
Enrolment period
12.08.2024 - 09.09.2024
Timing
02.09.2024 - 13.12.2024
Credits
5 op
Mode of delivery
Contact teaching
Unit
TAMK Mathematics and Physics
Campus
TAMK Main Campus
Teaching languages
- Finnish
Degree programmes
- Degree Programme in Vehicle Engineering
Teachers
- Tuomo Nieminen
Groups
-
24AUTOB
Objectives (course unit)
In this course, you will learn the basics of the physics behind technology, the subject area being mechanics, thermophysics and electricity
As a student, you will
• know the basic objects and phenomena related to mechanics, thermophysics and electricity
• know how to connect objects and phenomena related to mechanics, thermophysics and electricity to technical and everyday practical applications
• know the quantities, their units, and the basic laws of physics between the quantities related to the basic elements and phenomena
• have a basic understanding about phenomena related to mechanics, thermophysics and electricity
• can describe the basic principles of solving problems related to mechanics, thermophysics and electricity on a qualitative level and justify the choices you make
• recognize the quantities related to the problems and their preservation or change
• know how to choose the laws needed to solve problems
• know the limitations of the laws used
• know how to solve quantitative problems by use of the physical laws
• know how to state the solutions of quantitative problems with appropriate accuracy of presentation
• can justify the choices you make orally or in writing
• know how to evaluate the reasonableness, correctness and reliability of the calculated solutions you have made
• can carry out a simple measurement related to mechanics, thermophysics and electricity and interpret the results you get
• can make and interpret graphical presentations
Content (course unit)
Mechanics
• Force, gravity, friction, interaction, effect of force on motion, Newton's laws
• Work, energy, conservation of energy, power, efficiency
• Basic movement models,
Thermal physics
• Temperature, temperature change and thermal expansion
• Thermal energy, basic concepts of thermodynamics of substances, changes of state, calorimetry
• Basic models of heat transfer
• Heat output of the flowing substance
Electricity
• ´Electric current, voltage, resistance, power, Ohm's law, electrical energy
Assessment criteria, satisfactory (1-2) (course unit)
Student:
• knows objects and phenomena related to the topic
• partially knows how to relate objects and phenomena related to the topic to technology and everyday applications
• knows the quantities related to the objects and phenomena of the subject area, the related units and the laws between the quantities only in familiar, exemplary situations.
• has a basic idea of the phenomena related to the subject area of insufficient qualitative level
• Recognizes the basic phenomena of physics appearing in problems related to the topic, the whole is partly unstructured and incomplete.
• can describe on a qualitative level some of the basic principles of solving problems related to the topic and makes his solutions as copies of previously studied examples.
• recognize, with support or based on a previous example, the quantities related to the problems and their preservation or change
• the selection of the laws needed to solve the problems is based on support or ready-made example models. Self-directed selection of models is uncertain and partly random.
• knows how to solve computational problems in situations that are, for example, familiar
• can sometimes state the solutions of computational problems with suitable accuracy of presentation
• the student has challenges justifying the choices he has made orally or in writing
• there are challenges in assessing the correctness and reliability of computational solutions.
• Works in the measurement related to the topic as part of a group
Assessment criteria, good (3-4) (course unit)
• knows the objects and phenomena related to the topic
• knows how to connect objects and phenomena related to the topic to technology and everyday applications
• knows the quantities related to the objects and phenomena of the topic, their units and the basic laws of physics between the quantities
• have a basic idea of the right qualitative level about the phenomena related to the topic
• can identify the basic phenomena of physics that are relevant to the solution of the problems in the problems related to the topic
• can describe on a qualitative level the basic principles of solving problems related to the subject area and justify the choices they have made related to solving problems
• identify the quantities related to problems and their preservation or change
• knows how to choose the laws needed to solve problems
• Knows the limitations of the laws he uses
• knows how to solve computational problems by making good use of the laws of his choice
• knows how to state the solutions of computational problems with appropriate accuracy of presentation
• can justify the choices he made orally or in writing
• knows how to evaluate the reasonableness, correctness and reliability of the calculated solutions he has made
• can carry out a simple measurement related to the topic and interpret the results obtained through the quantities and basic laws they have adopted
Assessment criteria, excellent (5) (course unit)
• knows the objects and phenomena related to the subject area and their connection to other subject areas
• knows how to comprehensively relate objects and phenomena related to the topic to technology and everyday applications
• thoroughly knows the quantities related to the objects and phenomena of the topic, their units and the basic laws of physics between the quantities and knows their limitations
• has a basic idea of the right qualitative level about the phenomena related to the topic and knows how to express it to others
• can identify the basic phenomena of physics that are relevant to the solution of the problems in the problems related to the topic
• can describe on a qualitative level the basic principles of solving problems related to the subject area and justify the choices they have made related to solving problems
• identify the quantities related to the problems in a broad area, and their preservation or change
• knows how to choose the laws needed to solve problems
• Knows the limitations of the laws he uses
• knows how to solve computational problems by making good use of the laws of his choice
• knows how to state the solutions of computational problems with appropriate accuracy of presentation
• can justify the choices he made orally or in writing
• can reasonably assess the reasonableness, correctness and reliability of the calculated solutions he has made
• can implement and, if necessary, plan a simple measurement related to the topic and interpret the results obtained through the quantities and basic laws they have adopted.
Assessment scale
0-5
Enrolment period
05.08.2024 - 08.09.2024
Timing
26.08.2024 - 17.12.2024
Credits
5 op
Mode of delivery
Contact teaching
Unit
TAMK Mathematics and Physics
Campus
TAMK Main Campus
Teaching languages
- Finnish
Seats
0 - 40
Degree programmes
- Degree Programme in Electrical Engineering
Teachers
- Anne Leppänen
Person in charge
Jarkko Lehtonen
Groups
-
24I231A
Objectives (course unit)
In this course, you will learn the basics of the physics behind technology, the subject area being mechanics, thermophysics and electricity
As a student, you will
• know the basic objects and phenomena related to mechanics, thermophysics and electricity
• know how to connect objects and phenomena related to mechanics, thermophysics and electricity to technical and everyday practical applications
• know the quantities, their units, and the basic laws of physics between the quantities related to the basic elements and phenomena
• have a basic understanding about phenomena related to mechanics, thermophysics and electricity
• can describe the basic principles of solving problems related to mechanics, thermophysics and electricity on a qualitative level and justify the choices you make
• recognize the quantities related to the problems and their preservation or change
• know how to choose the laws needed to solve problems
• know the limitations of the laws used
• know how to solve quantitative problems by use of the physical laws
• know how to state the solutions of quantitative problems with appropriate accuracy of presentation
• can justify the choices you make orally or in writing
• know how to evaluate the reasonableness, correctness and reliability of the calculated solutions you have made
• can carry out a simple measurement related to mechanics, thermophysics and electricity and interpret the results you get
• can make and interpret graphical presentations
Content (course unit)
Mechanics
• Force, gravity, friction, interaction, effect of force on motion, Newton's laws
• Work, energy, conservation of energy, power, efficiency
• Basic movement models,
Thermal physics
• Temperature, temperature change and thermal expansion
• Thermal energy, basic concepts of thermodynamics of substances, changes of state, calorimetry
• Basic models of heat transfer
• Heat output of the flowing substance
Electricity
• ´Electric current, voltage, resistance, power, Ohm's law, electrical energy
Assessment criteria, satisfactory (1-2) (course unit)
Student:
• knows objects and phenomena related to the topic
• partially knows how to relate objects and phenomena related to the topic to technology and everyday applications
• knows the quantities related to the objects and phenomena of the subject area, the related units and the laws between the quantities only in familiar, exemplary situations.
• has a basic idea of the phenomena related to the subject area of insufficient qualitative level
• Recognizes the basic phenomena of physics appearing in problems related to the topic, the whole is partly unstructured and incomplete.
• can describe on a qualitative level some of the basic principles of solving problems related to the topic and makes his solutions as copies of previously studied examples.
• recognize, with support or based on a previous example, the quantities related to the problems and their preservation or change
• the selection of the laws needed to solve the problems is based on support or ready-made example models. Self-directed selection of models is uncertain and partly random.
• knows how to solve computational problems in situations that are, for example, familiar
• can sometimes state the solutions of computational problems with suitable accuracy of presentation
• the student has challenges justifying the choices he has made orally or in writing
• there are challenges in assessing the correctness and reliability of computational solutions.
• Works in the measurement related to the topic as part of a group
Assessment criteria, good (3-4) (course unit)
• knows the objects and phenomena related to the topic
• knows how to connect objects and phenomena related to the topic to technology and everyday applications
• knows the quantities related to the objects and phenomena of the topic, their units and the basic laws of physics between the quantities
• have a basic idea of the right qualitative level about the phenomena related to the topic
• can identify the basic phenomena of physics that are relevant to the solution of the problems in the problems related to the topic
• can describe on a qualitative level the basic principles of solving problems related to the subject area and justify the choices they have made related to solving problems
• identify the quantities related to problems and their preservation or change
• knows how to choose the laws needed to solve problems
• Knows the limitations of the laws he uses
• knows how to solve computational problems by making good use of the laws of his choice
• knows how to state the solutions of computational problems with appropriate accuracy of presentation
• can justify the choices he made orally or in writing
• knows how to evaluate the reasonableness, correctness and reliability of the calculated solutions he has made
• can carry out a simple measurement related to the topic and interpret the results obtained through the quantities and basic laws they have adopted
Assessment criteria, excellent (5) (course unit)
• knows the objects and phenomena related to the subject area and their connection to other subject areas
• knows how to comprehensively relate objects and phenomena related to the topic to technology and everyday applications
• thoroughly knows the quantities related to the objects and phenomena of the topic, their units and the basic laws of physics between the quantities and knows their limitations
• has a basic idea of the right qualitative level about the phenomena related to the topic and knows how to express it to others
• can identify the basic phenomena of physics that are relevant to the solution of the problems in the problems related to the topic
• can describe on a qualitative level the basic principles of solving problems related to the subject area and justify the choices they have made related to solving problems
• identify the quantities related to the problems in a broad area, and their preservation or change
• knows how to choose the laws needed to solve problems
• Knows the limitations of the laws he uses
• knows how to solve computational problems by making good use of the laws of his choice
• knows how to state the solutions of computational problems with appropriate accuracy of presentation
• can justify the choices he made orally or in writing
• can reasonably assess the reasonableness, correctness and reliability of the calculated solutions he has made
• can implement and, if necessary, plan a simple measurement related to the topic and interpret the results obtained through the quantities and basic laws they have adopted.
Assessment scale
0-5
Enrolment period
05.08.2024 - 08.09.2024
Timing
26.08.2024 - 17.12.2024
Credits
5 op
Mode of delivery
Contact teaching
Unit
TAMK Mathematics and Physics
Campus
TAMK Main Campus
Teaching languages
- Finnish
Seats
0 - 40
Degree programmes
- Degree Programme in Electrical Engineering
Teachers
- Anne Leppänen
Person in charge
Jarkko Lehtonen
Groups
-
24I231B
Objectives (course unit)
In this course, you will learn the basics of the physics behind technology, the subject area being mechanics, thermophysics and electricity
As a student, you will
• know the basic objects and phenomena related to mechanics, thermophysics and electricity
• know how to connect objects and phenomena related to mechanics, thermophysics and electricity to technical and everyday practical applications
• know the quantities, their units, and the basic laws of physics between the quantities related to the basic elements and phenomena
• have a basic understanding about phenomena related to mechanics, thermophysics and electricity
• can describe the basic principles of solving problems related to mechanics, thermophysics and electricity on a qualitative level and justify the choices you make
• recognize the quantities related to the problems and their preservation or change
• know how to choose the laws needed to solve problems
• know the limitations of the laws used
• know how to solve quantitative problems by use of the physical laws
• know how to state the solutions of quantitative problems with appropriate accuracy of presentation
• can justify the choices you make orally or in writing
• know how to evaluate the reasonableness, correctness and reliability of the calculated solutions you have made
• can carry out a simple measurement related to mechanics, thermophysics and electricity and interpret the results you get
• can make and interpret graphical presentations
Content (course unit)
Mechanics
• Force, gravity, friction, interaction, effect of force on motion, Newton's laws
• Work, energy, conservation of energy, power, efficiency
• Basic movement models,
Thermal physics
• Temperature, temperature change and thermal expansion
• Thermal energy, basic concepts of thermodynamics of substances, changes of state, calorimetry
• Basic models of heat transfer
• Heat output of the flowing substance
Electricity
• ´Electric current, voltage, resistance, power, Ohm's law, electrical energy
Assessment criteria, satisfactory (1-2) (course unit)
Student:
• knows objects and phenomena related to the topic
• partially knows how to relate objects and phenomena related to the topic to technology and everyday applications
• knows the quantities related to the objects and phenomena of the subject area, the related units and the laws between the quantities only in familiar, exemplary situations.
• has a basic idea of the phenomena related to the subject area of insufficient qualitative level
• Recognizes the basic phenomena of physics appearing in problems related to the topic, the whole is partly unstructured and incomplete.
• can describe on a qualitative level some of the basic principles of solving problems related to the topic and makes his solutions as copies of previously studied examples.
• recognize, with support or based on a previous example, the quantities related to the problems and their preservation or change
• the selection of the laws needed to solve the problems is based on support or ready-made example models. Self-directed selection of models is uncertain and partly random.
• knows how to solve computational problems in situations that are, for example, familiar
• can sometimes state the solutions of computational problems with suitable accuracy of presentation
• the student has challenges justifying the choices he has made orally or in writing
• there are challenges in assessing the correctness and reliability of computational solutions.
• Works in the measurement related to the topic as part of a group
Assessment criteria, good (3-4) (course unit)
• knows the objects and phenomena related to the topic
• knows how to connect objects and phenomena related to the topic to technology and everyday applications
• knows the quantities related to the objects and phenomena of the topic, their units and the basic laws of physics between the quantities
• have a basic idea of the right qualitative level about the phenomena related to the topic
• can identify the basic phenomena of physics that are relevant to the solution of the problems in the problems related to the topic
• can describe on a qualitative level the basic principles of solving problems related to the subject area and justify the choices they have made related to solving problems
• identify the quantities related to problems and their preservation or change
• knows how to choose the laws needed to solve problems
• Knows the limitations of the laws he uses
• knows how to solve computational problems by making good use of the laws of his choice
• knows how to state the solutions of computational problems with appropriate accuracy of presentation
• can justify the choices he made orally or in writing
• knows how to evaluate the reasonableness, correctness and reliability of the calculated solutions he has made
• can carry out a simple measurement related to the topic and interpret the results obtained through the quantities and basic laws they have adopted
Assessment criteria, excellent (5) (course unit)
• knows the objects and phenomena related to the subject area and their connection to other subject areas
• knows how to comprehensively relate objects and phenomena related to the topic to technology and everyday applications
• thoroughly knows the quantities related to the objects and phenomena of the topic, their units and the basic laws of physics between the quantities and knows their limitations
• has a basic idea of the right qualitative level about the phenomena related to the topic and knows how to express it to others
• can identify the basic phenomena of physics that are relevant to the solution of the problems in the problems related to the topic
• can describe on a qualitative level the basic principles of solving problems related to the subject area and justify the choices they have made related to solving problems
• identify the quantities related to the problems in a broad area, and their preservation or change
• knows how to choose the laws needed to solve problems
• Knows the limitations of the laws he uses
• knows how to solve computational problems by making good use of the laws of his choice
• knows how to state the solutions of computational problems with appropriate accuracy of presentation
• can justify the choices he made orally or in writing
• can reasonably assess the reasonableness, correctness and reliability of the calculated solutions he has made
• can implement and, if necessary, plan a simple measurement related to the topic and interpret the results obtained through the quantities and basic laws they have adopted.
Assessment scale
0-5
Enrolment period
07.06.2024 - 30.08.2024
Timing
01.08.2024 - 13.12.2024
Credits
5 op
Mode of delivery
Contact teaching
Unit
TAMK Mathematics and Physics
Campus
TAMK Main Campus
Teaching languages
- Finnish
Degree programmes
- Degree Programme in Laboratory Engineering
Teachers
- Reijo Manninen
Person in charge
Eeva-Leena Tuominen
Groups
-
24LATE
Objectives (course unit)
In this course, you will learn the basics of the physics behind technology, the subject area being mechanics, thermophysics and electricity
As a student, you will
• know the basic objects and phenomena related to mechanics, thermophysics and electricity
• know how to connect objects and phenomena related to mechanics, thermophysics and electricity to technical and everyday practical applications
• know the quantities, their units, and the basic laws of physics between the quantities related to the basic elements and phenomena
• have a basic understanding about phenomena related to mechanics, thermophysics and electricity
• can describe the basic principles of solving problems related to mechanics, thermophysics and electricity on a qualitative level and justify the choices you make
• recognize the quantities related to the problems and their preservation or change
• know how to choose the laws needed to solve problems
• know the limitations of the laws used
• know how to solve quantitative problems by use of the physical laws
• know how to state the solutions of quantitative problems with appropriate accuracy of presentation
• can justify the choices you make orally or in writing
• know how to evaluate the reasonableness, correctness and reliability of the calculated solutions you have made
• can carry out a simple measurement related to mechanics, thermophysics and electricity and interpret the results you get
• can make and interpret graphical presentations
Content (course unit)
Mechanics
• Force, gravity, friction, interaction, effect of force on motion, Newton's laws
• Work, energy, conservation of energy, power, efficiency
• Basic movement models,
Thermal physics
• Temperature, temperature change and thermal expansion
• Thermal energy, basic concepts of thermodynamics of substances, changes of state, calorimetry
• Basic models of heat transfer
• Heat output of the flowing substance
Electricity
• ´Electric current, voltage, resistance, power, Ohm's law, electrical energy
Assessment criteria, satisfactory (1-2) (course unit)
Student:
• knows objects and phenomena related to the topic
• partially knows how to relate objects and phenomena related to the topic to technology and everyday applications
• knows the quantities related to the objects and phenomena of the subject area, the related units and the laws between the quantities only in familiar, exemplary situations.
• has a basic idea of the phenomena related to the subject area of insufficient qualitative level
• Recognizes the basic phenomena of physics appearing in problems related to the topic, the whole is partly unstructured and incomplete.
• can describe on a qualitative level some of the basic principles of solving problems related to the topic and makes his solutions as copies of previously studied examples.
• recognize, with support or based on a previous example, the quantities related to the problems and their preservation or change
• the selection of the laws needed to solve the problems is based on support or ready-made example models. Self-directed selection of models is uncertain and partly random.
• knows how to solve computational problems in situations that are, for example, familiar
• can sometimes state the solutions of computational problems with suitable accuracy of presentation
• the student has challenges justifying the choices he has made orally or in writing
• there are challenges in assessing the correctness and reliability of computational solutions.
• Works in the measurement related to the topic as part of a group
Assessment criteria, good (3-4) (course unit)
• knows the objects and phenomena related to the topic
• knows how to connect objects and phenomena related to the topic to technology and everyday applications
• knows the quantities related to the objects and phenomena of the topic, their units and the basic laws of physics between the quantities
• have a basic idea of the right qualitative level about the phenomena related to the topic
• can identify the basic phenomena of physics that are relevant to the solution of the problems in the problems related to the topic
• can describe on a qualitative level the basic principles of solving problems related to the subject area and justify the choices they have made related to solving problems
• identify the quantities related to problems and their preservation or change
• knows how to choose the laws needed to solve problems
• Knows the limitations of the laws he uses
• knows how to solve computational problems by making good use of the laws of his choice
• knows how to state the solutions of computational problems with appropriate accuracy of presentation
• can justify the choices he made orally or in writing
• knows how to evaluate the reasonableness, correctness and reliability of the calculated solutions he has made
• can carry out a simple measurement related to the topic and interpret the results obtained through the quantities and basic laws they have adopted
Assessment criteria, excellent (5) (course unit)
• knows the objects and phenomena related to the subject area and their connection to other subject areas
• knows how to comprehensively relate objects and phenomena related to the topic to technology and everyday applications
• thoroughly knows the quantities related to the objects and phenomena of the topic, their units and the basic laws of physics between the quantities and knows their limitations
• has a basic idea of the right qualitative level about the phenomena related to the topic and knows how to express it to others
• can identify the basic phenomena of physics that are relevant to the solution of the problems in the problems related to the topic
• can describe on a qualitative level the basic principles of solving problems related to the subject area and justify the choices they have made related to solving problems
• identify the quantities related to the problems in a broad area, and their preservation or change
• knows how to choose the laws needed to solve problems
• Knows the limitations of the laws he uses
• knows how to solve computational problems by making good use of the laws of his choice
• knows how to state the solutions of computational problems with appropriate accuracy of presentation
• can justify the choices he made orally or in writing
• can reasonably assess the reasonableness, correctness and reliability of the calculated solutions he has made
• can implement and, if necessary, plan a simple measurement related to the topic and interpret the results obtained through the quantities and basic laws they have adopted.
Assessment scale
0-5
Enrolment period
02.07.2024 - 30.08.2024
Timing
01.08.2024 - 03.12.2024
Credits
5 op
Mode of delivery
Contact teaching
Unit
TAMK Mathematics and Physics
Campus
TAMK Main Campus
Teaching languages
- Finnish
Degree programmes
- Degree Programme in Mechanical Engineering
Teachers
- Jari Puranen
Person in charge
Erkki Kiviniemi
Groups
-
24I112A
Objectives (course unit)
In this course, you will learn the basics of the physics behind technology, the subject area being mechanics, thermophysics and electricity
As a student, you will
• know the basic objects and phenomena related to mechanics, thermophysics and electricity
• know how to connect objects and phenomena related to mechanics, thermophysics and electricity to technical and everyday practical applications
• know the quantities, their units, and the basic laws of physics between the quantities related to the basic elements and phenomena
• have a basic understanding about phenomena related to mechanics, thermophysics and electricity
• can describe the basic principles of solving problems related to mechanics, thermophysics and electricity on a qualitative level and justify the choices you make
• recognize the quantities related to the problems and their preservation or change
• know how to choose the laws needed to solve problems
• know the limitations of the laws used
• know how to solve quantitative problems by use of the physical laws
• know how to state the solutions of quantitative problems with appropriate accuracy of presentation
• can justify the choices you make orally or in writing
• know how to evaluate the reasonableness, correctness and reliability of the calculated solutions you have made
• can carry out a simple measurement related to mechanics, thermophysics and electricity and interpret the results you get
• can make and interpret graphical presentations
Content (course unit)
Mechanics
• Force, gravity, friction, interaction, effect of force on motion, Newton's laws
• Work, energy, conservation of energy, power, efficiency
• Basic movement models,
Thermal physics
• Temperature, temperature change and thermal expansion
• Thermal energy, basic concepts of thermodynamics of substances, changes of state, calorimetry
• Basic models of heat transfer
• Heat output of the flowing substance
Electricity
• ´Electric current, voltage, resistance, power, Ohm's law, electrical energy
Assessment criteria, satisfactory (1-2) (course unit)
Student:
• knows objects and phenomena related to the topic
• partially knows how to relate objects and phenomena related to the topic to technology and everyday applications
• knows the quantities related to the objects and phenomena of the subject area, the related units and the laws between the quantities only in familiar, exemplary situations.
• has a basic idea of the phenomena related to the subject area of insufficient qualitative level
• Recognizes the basic phenomena of physics appearing in problems related to the topic, the whole is partly unstructured and incomplete.
• can describe on a qualitative level some of the basic principles of solving problems related to the topic and makes his solutions as copies of previously studied examples.
• recognize, with support or based on a previous example, the quantities related to the problems and their preservation or change
• the selection of the laws needed to solve the problems is based on support or ready-made example models. Self-directed selection of models is uncertain and partly random.
• knows how to solve computational problems in situations that are, for example, familiar
• can sometimes state the solutions of computational problems with suitable accuracy of presentation
• the student has challenges justifying the choices he has made orally or in writing
• there are challenges in assessing the correctness and reliability of computational solutions.
• Works in the measurement related to the topic as part of a group
Assessment criteria, good (3-4) (course unit)
• knows the objects and phenomena related to the topic
• knows how to connect objects and phenomena related to the topic to technology and everyday applications
• knows the quantities related to the objects and phenomena of the topic, their units and the basic laws of physics between the quantities
• have a basic idea of the right qualitative level about the phenomena related to the topic
• can identify the basic phenomena of physics that are relevant to the solution of the problems in the problems related to the topic
• can describe on a qualitative level the basic principles of solving problems related to the subject area and justify the choices they have made related to solving problems
• identify the quantities related to problems and their preservation or change
• knows how to choose the laws needed to solve problems
• Knows the limitations of the laws he uses
• knows how to solve computational problems by making good use of the laws of his choice
• knows how to state the solutions of computational problems with appropriate accuracy of presentation
• can justify the choices he made orally or in writing
• knows how to evaluate the reasonableness, correctness and reliability of the calculated solutions he has made
• can carry out a simple measurement related to the topic and interpret the results obtained through the quantities and basic laws they have adopted
Assessment criteria, excellent (5) (course unit)
• knows the objects and phenomena related to the subject area and their connection to other subject areas
• knows how to comprehensively relate objects and phenomena related to the topic to technology and everyday applications
• thoroughly knows the quantities related to the objects and phenomena of the topic, their units and the basic laws of physics between the quantities and knows their limitations
• has a basic idea of the right qualitative level about the phenomena related to the topic and knows how to express it to others
• can identify the basic phenomena of physics that are relevant to the solution of the problems in the problems related to the topic
• can describe on a qualitative level the basic principles of solving problems related to the subject area and justify the choices they have made related to solving problems
• identify the quantities related to the problems in a broad area, and their preservation or change
• knows how to choose the laws needed to solve problems
• Knows the limitations of the laws he uses
• knows how to solve computational problems by making good use of the laws of his choice
• knows how to state the solutions of computational problems with appropriate accuracy of presentation
• can justify the choices he made orally or in writing
• can reasonably assess the reasonableness, correctness and reliability of the calculated solutions he has made
• can implement and, if necessary, plan a simple measurement related to the topic and interpret the results obtained through the quantities and basic laws they have adopted.
Assessment scale
0-5
Enrolment period
02.07.2024 - 30.08.2024
Timing
01.08.2024 - 03.12.2024
Credits
5 op
Mode of delivery
Contact teaching
Unit
TAMK Mathematics and Physics
Campus
TAMK Main Campus
Teaching languages
- Finnish
Degree programmes
- Degree Programme in Mechanical Engineering
Teachers
- Jari Puranen
Person in charge
Erkki Kiviniemi
Groups
-
24I112B
Objectives (course unit)
In this course, you will learn the basics of the physics behind technology, the subject area being mechanics, thermophysics and electricity
As a student, you will
• know the basic objects and phenomena related to mechanics, thermophysics and electricity
• know how to connect objects and phenomena related to mechanics, thermophysics and electricity to technical and everyday practical applications
• know the quantities, their units, and the basic laws of physics between the quantities related to the basic elements and phenomena
• have a basic understanding about phenomena related to mechanics, thermophysics and electricity
• can describe the basic principles of solving problems related to mechanics, thermophysics and electricity on a qualitative level and justify the choices you make
• recognize the quantities related to the problems and their preservation or change
• know how to choose the laws needed to solve problems
• know the limitations of the laws used
• know how to solve quantitative problems by use of the physical laws
• know how to state the solutions of quantitative problems with appropriate accuracy of presentation
• can justify the choices you make orally or in writing
• know how to evaluate the reasonableness, correctness and reliability of the calculated solutions you have made
• can carry out a simple measurement related to mechanics, thermophysics and electricity and interpret the results you get
• can make and interpret graphical presentations
Content (course unit)
Mechanics
• Force, gravity, friction, interaction, effect of force on motion, Newton's laws
• Work, energy, conservation of energy, power, efficiency
• Basic movement models,
Thermal physics
• Temperature, temperature change and thermal expansion
• Thermal energy, basic concepts of thermodynamics of substances, changes of state, calorimetry
• Basic models of heat transfer
• Heat output of the flowing substance
Electricity
• ´Electric current, voltage, resistance, power, Ohm's law, electrical energy
Assessment criteria, satisfactory (1-2) (course unit)
Student:
• knows objects and phenomena related to the topic
• partially knows how to relate objects and phenomena related to the topic to technology and everyday applications
• knows the quantities related to the objects and phenomena of the subject area, the related units and the laws between the quantities only in familiar, exemplary situations.
• has a basic idea of the phenomena related to the subject area of insufficient qualitative level
• Recognizes the basic phenomena of physics appearing in problems related to the topic, the whole is partly unstructured and incomplete.
• can describe on a qualitative level some of the basic principles of solving problems related to the topic and makes his solutions as copies of previously studied examples.
• recognize, with support or based on a previous example, the quantities related to the problems and their preservation or change
• the selection of the laws needed to solve the problems is based on support or ready-made example models. Self-directed selection of models is uncertain and partly random.
• knows how to solve computational problems in situations that are, for example, familiar
• can sometimes state the solutions of computational problems with suitable accuracy of presentation
• the student has challenges justifying the choices he has made orally or in writing
• there are challenges in assessing the correctness and reliability of computational solutions.
• Works in the measurement related to the topic as part of a group
Assessment criteria, good (3-4) (course unit)
• knows the objects and phenomena related to the topic
• knows how to connect objects and phenomena related to the topic to technology and everyday applications
• knows the quantities related to the objects and phenomena of the topic, their units and the basic laws of physics between the quantities
• have a basic idea of the right qualitative level about the phenomena related to the topic
• can identify the basic phenomena of physics that are relevant to the solution of the problems in the problems related to the topic
• can describe on a qualitative level the basic principles of solving problems related to the subject area and justify the choices they have made related to solving problems
• identify the quantities related to problems and their preservation or change
• knows how to choose the laws needed to solve problems
• Knows the limitations of the laws he uses
• knows how to solve computational problems by making good use of the laws of his choice
• knows how to state the solutions of computational problems with appropriate accuracy of presentation
• can justify the choices he made orally or in writing
• knows how to evaluate the reasonableness, correctness and reliability of the calculated solutions he has made
• can carry out a simple measurement related to the topic and interpret the results obtained through the quantities and basic laws they have adopted
Assessment criteria, excellent (5) (course unit)
• knows the objects and phenomena related to the subject area and their connection to other subject areas
• knows how to comprehensively relate objects and phenomena related to the topic to technology and everyday applications
• thoroughly knows the quantities related to the objects and phenomena of the topic, their units and the basic laws of physics between the quantities and knows their limitations
• has a basic idea of the right qualitative level about the phenomena related to the topic and knows how to express it to others
• can identify the basic phenomena of physics that are relevant to the solution of the problems in the problems related to the topic
• can describe on a qualitative level the basic principles of solving problems related to the subject area and justify the choices they have made related to solving problems
• identify the quantities related to the problems in a broad area, and their preservation or change
• knows how to choose the laws needed to solve problems
• Knows the limitations of the laws he uses
• knows how to solve computational problems by making good use of the laws of his choice
• knows how to state the solutions of computational problems with appropriate accuracy of presentation
• can justify the choices he made orally or in writing
• can reasonably assess the reasonableness, correctness and reliability of the calculated solutions he has made
• can implement and, if necessary, plan a simple measurement related to the topic and interpret the results obtained through the quantities and basic laws they have adopted.
Assessment scale
0-5
Enrolment period
02.07.2024 - 30.08.2024
Timing
01.08.2024 - 03.12.2024
Credits
5 op
Mode of delivery
Contact teaching
Unit
TAMK Mathematics and Physics
Campus
TAMK Main Campus
Teaching languages
- Finnish
Degree programmes
- Degree Programme in Mechanical Engineering
Teachers
- Jari Puranen
Person in charge
Erkki Kiviniemi
Groups
-
24I112C
Objectives (course unit)
In this course, you will learn the basics of the physics behind technology, the subject area being mechanics, thermophysics and electricity
As a student, you will
• know the basic objects and phenomena related to mechanics, thermophysics and electricity
• know how to connect objects and phenomena related to mechanics, thermophysics and electricity to technical and everyday practical applications
• know the quantities, their units, and the basic laws of physics between the quantities related to the basic elements and phenomena
• have a basic understanding about phenomena related to mechanics, thermophysics and electricity
• can describe the basic principles of solving problems related to mechanics, thermophysics and electricity on a qualitative level and justify the choices you make
• recognize the quantities related to the problems and their preservation or change
• know how to choose the laws needed to solve problems
• know the limitations of the laws used
• know how to solve quantitative problems by use of the physical laws
• know how to state the solutions of quantitative problems with appropriate accuracy of presentation
• can justify the choices you make orally or in writing
• know how to evaluate the reasonableness, correctness and reliability of the calculated solutions you have made
• can carry out a simple measurement related to mechanics, thermophysics and electricity and interpret the results you get
• can make and interpret graphical presentations
Content (course unit)
Mechanics
• Force, gravity, friction, interaction, effect of force on motion, Newton's laws
• Work, energy, conservation of energy, power, efficiency
• Basic movement models,
Thermal physics
• Temperature, temperature change and thermal expansion
• Thermal energy, basic concepts of thermodynamics of substances, changes of state, calorimetry
• Basic models of heat transfer
• Heat output of the flowing substance
Electricity
• ´Electric current, voltage, resistance, power, Ohm's law, electrical energy
Assessment criteria, satisfactory (1-2) (course unit)
Student:
• knows objects and phenomena related to the topic
• partially knows how to relate objects and phenomena related to the topic to technology and everyday applications
• knows the quantities related to the objects and phenomena of the subject area, the related units and the laws between the quantities only in familiar, exemplary situations.
• has a basic idea of the phenomena related to the subject area of insufficient qualitative level
• Recognizes the basic phenomena of physics appearing in problems related to the topic, the whole is partly unstructured and incomplete.
• can describe on a qualitative level some of the basic principles of solving problems related to the topic and makes his solutions as copies of previously studied examples.
• recognize, with support or based on a previous example, the quantities related to the problems and their preservation or change
• the selection of the laws needed to solve the problems is based on support or ready-made example models. Self-directed selection of models is uncertain and partly random.
• knows how to solve computational problems in situations that are, for example, familiar
• can sometimes state the solutions of computational problems with suitable accuracy of presentation
• the student has challenges justifying the choices he has made orally or in writing
• there are challenges in assessing the correctness and reliability of computational solutions.
• Works in the measurement related to the topic as part of a group
Assessment criteria, good (3-4) (course unit)
• knows the objects and phenomena related to the topic
• knows how to connect objects and phenomena related to the topic to technology and everyday applications
• knows the quantities related to the objects and phenomena of the topic, their units and the basic laws of physics between the quantities
• have a basic idea of the right qualitative level about the phenomena related to the topic
• can identify the basic phenomena of physics that are relevant to the solution of the problems in the problems related to the topic
• can describe on a qualitative level the basic principles of solving problems related to the subject area and justify the choices they have made related to solving problems
• identify the quantities related to problems and their preservation or change
• knows how to choose the laws needed to solve problems
• Knows the limitations of the laws he uses
• knows how to solve computational problems by making good use of the laws of his choice
• knows how to state the solutions of computational problems with appropriate accuracy of presentation
• can justify the choices he made orally or in writing
• knows how to evaluate the reasonableness, correctness and reliability of the calculated solutions he has made
• can carry out a simple measurement related to the topic and interpret the results obtained through the quantities and basic laws they have adopted
Assessment criteria, excellent (5) (course unit)
• knows the objects and phenomena related to the subject area and their connection to other subject areas
• knows how to comprehensively relate objects and phenomena related to the topic to technology and everyday applications
• thoroughly knows the quantities related to the objects and phenomena of the topic, their units and the basic laws of physics between the quantities and knows their limitations
• has a basic idea of the right qualitative level about the phenomena related to the topic and knows how to express it to others
• can identify the basic phenomena of physics that are relevant to the solution of the problems in the problems related to the topic
• can describe on a qualitative level the basic principles of solving problems related to the subject area and justify the choices they have made related to solving problems
• identify the quantities related to the problems in a broad area, and their preservation or change
• knows how to choose the laws needed to solve problems
• Knows the limitations of the laws he uses
• knows how to solve computational problems by making good use of the laws of his choice
• knows how to state the solutions of computational problems with appropriate accuracy of presentation
• can justify the choices he made orally or in writing
• can reasonably assess the reasonableness, correctness and reliability of the calculated solutions he has made
• can implement and, if necessary, plan a simple measurement related to the topic and interpret the results obtained through the quantities and basic laws they have adopted.
Assessment scale
0-5